Publications by authors named "Tetsuya Akita"

This paper describes the development of estimators for the contemporary migration number and rate of adults between two populations in iteroparous species. The proposed estimators are based on known half-sibling (HS) and/or parent-offspring (PO) relationships observed between populations across breeding seasons. The rationale is that HS and PO pairs exhibit information about the occurrence frequency of parental movements during the breeding interval.

View Article and Find Full Text PDF

This study develops a nearly unbiased estimator of the ratio of the contemporary effective mother size to the census size in a population, as a proxy of the ratio of contemporary effective size (or effective breeding size) to census size ( / or /). The proposed estimator is based on both known mother-offspring (MO) and maternal-sibling (MS) relationships observed within the same cohort, in which sampled individuals in the cohort probably share MO relationships with sampled mothers. The rationale is that the frequency of MO and MS pairs contains information regarding the contemporary effective mother size and the (mature) census size, respectively.

View Article and Find Full Text PDF

The Pacific bluefin tuna, Thunnus orientalis, is a highly migratory species that is widely distributed in the North Pacific Ocean. Like other marine species, T. orientalis has no external sexual dimorphism; thus, identifying sex-specific variants from whole genome sequence data is a useful approach to develop an effective sex identification method.

View Article and Find Full Text PDF

In this study, we developed a nearly unbiased estimator of contemporary effective mother size in a population, which is based on a known maternal half-sibling relationship found within the same cohort. Our method allows for variance of the average number of offspring per mother (i.e.

View Article and Find Full Text PDF

Species conservation and fisheries management require approaches that relate environmental conditions to population-level dynamics, especially because environmental conditions shift due to climate change. We combined an individual-level physiological model and a conceptually simple matrix population model to develop a novel tool that relates environmental change to population dynamics, and used this tool to analyze effects of environmental changes and early-life stochasticity on Pacific bluefin tuna (PBT) population growth. We found that (i) currently, PBT population experiences a positive growth rate, (ii) somewhat surprisingly, stochasticity in early life survival increases this growth rate, (iii) sexual maturation age strongly depends on food and temperature, (iv) current fishing pressure, though high, is tolerable as long as the environment is such that PBT mature in less than 9 years of age (maturation age of up to 10 is possible in some environments), (v) PBT population growth rate is much more susceptible to changes in juvenile survival than changes in total reproductive output or adult survival.

View Article and Find Full Text PDF

Coalescent process for prokaryote species is theoretically considered. Prokaryotes undergo homologous recombination with individuals of the same species (intraspecific recombination) and with individuals of other species (interspecific recombination). This work particularly focuses on interspecific recombination because intraspecific recombination has been well incorporated in coalescent framework.

View Article and Find Full Text PDF

Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them.

View Article and Find Full Text PDF

Gene duplication plays a crucial role in the development of complex biosystems, but the evolutionary forces behind the growth of biosystems are poorly understood. In this work, we introduce a model for such a growth through gene duplication. Plant microRNAs (miRNAs) are considered as a model.

View Article and Find Full Text PDF

Masting is synchronous intermittent production of seeds in perennial plant populations. Some self-compatible monoecious Quercus species, such as oaks, exhibit sex ratio dimorphism and produce a certain proportion of male flowers, even in a year when no seed set occurs. To investigate sex ratio dimorphism in masting trees, we introduced sexual allocation as an evolutionary trait into the Resource Budget Model and examined the evolution of the sex ratio.

View Article and Find Full Text PDF