Publications by authors named "Tetsushi Iwasaki"

Cellular senescence is defined as irreversible growth arrest induced by various stress, such as DNA damage and oxidative stress. Senescent cells exhibit various characteristic morphological changes including enlarged morphology. In our recent study, we identified Nectin-4 to be upregulated in cellular senescence by comparative transcriptomic analysis.

View Article and Find Full Text PDF

Cellular senescence is a highly stable cell-cycle arrest induced by DNA damage and various cellular stresses. Recently, we have revealed that lymphocyte antigen 6 complex, locus D (LY6D) is responsible for senescence-inducing stress-evoked vacuole formation through induction of Src family kinase (SFK)-mediated macropinocytosis. However, the signaling molecule(s) transducing the macropinocytosis signal from extracellular LY6D to the cytoplasmic SFK are unknown.

View Article and Find Full Text PDF

Amyloid fibrils have been an important subject as they are involved in the development of many amyloidoses and neurodegenerative diseases. The formation of amyloid fibrils is typically initiated by nucleation, whereas its exact mechanisms are largely unknown. With this situation, we have previously identified prefibrillar aggregates in the formation of insulin B chain amyloid fibrils, which have provided an insight into the mechanisms of protein assembly involved in nucleation.

View Article and Find Full Text PDF

The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by deficits.

View Article and Find Full Text PDF

Cellular senescence is a state of permanent proliferative arrest induced by a variety of stresses, such as DNA damage. The transcriptional activity of p53 has been known to be essential for senescence induction. It remains unknown, however, whether among the downstream genes of p53, there is a gene that has antisenescence function.

View Article and Find Full Text PDF

Amyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes, including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils.

View Article and Find Full Text PDF

Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown.

View Article and Find Full Text PDF

Catharanthus roseus is a medicinal plant well known for producing bioactive compounds such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). Although the leaves of this plant are the main source of these antitumour drugs, much remains unknown on how TIAs are biosynthesised from a central precursor, strictosidine, to various TIAs in planta. Here, we have succeeded in showing, for the first time in leaf tissue of C.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) are involved in the regulation of various cellular processes, including cell survival and apoptosis. Here, we report that Xenopus p42 MAPK becomes phosphorylated in apoptotic eggs, however this modification does not activate the enzyme. Using phosphorylation residue-specific antibodies, we demonstrate that this modification occurs on the Tyr residue in the MAPK activation segment, pinpointing the autophosphorylation mechanism.

View Article and Find Full Text PDF

The tumor suppressor bridging integrator 1 (BIN1) is a corepressor of the transcription factor E2F1 and inhibits cell-cycle progression. BIN1 also curbs cellular poly(ADP-ribosyl)ation (PARylation) and increases sensitivity of cancer cells to DNA-damaging therapeutic agents such as cisplatin. However, how BIN1 deficiency, a hallmark of advanced cancer cells, increases cisplatin resistance remains elusive.

View Article and Find Full Text PDF

d-amino acid oxidase (DAO) is a flavin adenine dinucleotide (FAD)-dependent oxidase metabolizing neutral and polar d-amino acids. Unlike l-amino acids, the amounts of d-amino acids in mammalian tissues are extremely low, and therefore, little has been investigated regarding the physiological role of DAO. We have recently identified to be up-regulated in cellular senescence, a permanent cell cycle arrest induced by various stresses, such as persistent DNA damage and oxidative stress.

View Article and Find Full Text PDF

The MEKK1 kinase is a key regulator of stress signaling in Arabidopsis; however, little is known about the regulation of its kinase activity. Here, we found that recombinant MEKK1, expressed in both mammalian HEK293 cells and Escherichia coli, shows a mobility shift in SDS-PAGE, and immunoblotting detected phosphorylation of serine, threonine, and tyrosine residues. N-terminal deletions, site-directed mutagenesis, and protein phosphatase treatment revealed that the mobility shift results from autophosphorylation of the kinase domain.

View Article and Find Full Text PDF

Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene () to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined.

View Article and Find Full Text PDF

Cytoplasmic mRNAs are specifically degraded in somatic cells as a part of early apoptotic response. However, no reports have been presented so far concerning mRNA fate in apoptotic gametes. In the present study, we analyzed the content of various cytoplasmic mRNAs in aging oocytes and eggs of the African clawed frog, Xenopus laevis.

View Article and Find Full Text PDF
Article Synopsis
  • Differentiated somatic cells can be reprogrammed to a pluripotent state using extracts from the eggs of the African clawed frog Xenopus laevis, highlighting a method that is not limited to just one species.
  • *Extract-mediated reprogramming offers an alternative or complementary option to existing techniques such as nuclear transfer, cell fusion, and the use of transcription factors.
  • *The process involves significant changes in the somatic cells, including altering nuclear structure, swapping somatic proteins for embryonic ones, and modifying DNA and histones for transcriptional reprogramming and DNA replication.
View Article and Find Full Text PDF

Ultraviolet (UV) B is a major factor in melanomagenesis. This fact is linked to the resistance of melanocytes to UVB-induced apoptosis. In this study, we characterized the involvement of Mcl-1L in the regulation of UVB-induced apoptosis in melanocytes and in melanoma cells.

View Article and Find Full Text PDF

Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new technique for monitoring gene expression in living oocytes of the African clawed frog, Xenopus laevis, by repeatedly collecting small samples of cytoplasmic material from a single oocyte.
  • Quantitative RT-PCR was used to measure transcript levels, enabling researchers to examine gene expression without harming the oocyte's viability.
  • The findings indicate that there is significant variation in gene expression among individual oocytes and that aging unfertilized eggs show decreased mRNA levels, suggesting a connection between mRNA degradation and egg apoptosis.
View Article and Find Full Text PDF

Background: In several species with external fertilization, including frogs, laid unfertilized eggs were found to die by apoptosis outside of the animal body. However, there is no apparent reason for the externally laid eggs to degrade by this process, considering that apoptosis developed as a mechanism to reduce the damaging effect of individual cell death to the whole organism.

Results: Here, we demonstrate that a number of eggs are retained in the genital tract of the African clawed frog Xenopus laevis after gonadotropin-induced ovulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that tyrosine phosphorylation of the p145(met)/β-subunit and its interaction with Src and EGFR are crucial for preventing cell death in human bladder carcinoma under low nutrient conditions.
  • Certain bladder carcinoma cell lines, unlike other cancer cells, show Src-dependent anti-apoptotic growth and utilize low-density membrane microdomains for signaling.
  • Uroplakin IIIa (UPIIIa) plays a key role in this process, with its proteolysis linked to Src activation and apoptosis, while its inhibition promotes cell death in serum-starved environments.
View Article and Find Full Text PDF

The transcription factor signal transducer and activator of transcription 3 (STAT3) has two important phosphorylation sites, Tyr705 and Ser727, for its activation. Ser727 phosphorylation has been considered to be a secondary event after Tyr705 phosphorylation. In this study, the role and regulation of Ser727 phosphorylation in STAT3 in melanocytic cells were examined.

View Article and Find Full Text PDF

Background: A characteristic feature of frog reproduction is external fertilization accomplished outside the female's body. Mature fertilization-competent frog eggs are arrested at the meiotic metaphase II with high activity of the key meiotic regulators, maturation promoting factor (MPF) and cytostatic factor (CSF), awaiting fertilization. If the eggs are not fertilized within several hours of ovulation, they deteriorate and ultimately die by as yet unknown mechanism.

View Article and Find Full Text PDF

Good donors in breeding for salt tolerance are a prerequisite for food security under changing climatic conditions. Horkuch, a farmer-popular salt tolerant rice (Oryza sativa L.) variety from the south-west coast of Bangladesh was characterised up to maturity under NaCl stress, together with a modern variety (BRRI dhan41), a sensitive control (BRRI dhan29) and Pokkali, the salt-tolerant benchmark for rice.

View Article and Find Full Text PDF

Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation.

View Article and Find Full Text PDF

Background: Studies have examined the function of PI 3-kinase in the early developmental processes that operate in oocytes or early embryos of various species. However, the roles of egg-associated PI 3-kinase and Akt, especially in signal transduction at fertilization, are not well understood.

Results: Here we show that in Xenopus eggs, a potent inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), LY294002 inhibits sperm-induced activation of the tyrosine kinase Src and a transient increase in the intracellular concentration of Ca2+ at fertilization.

View Article and Find Full Text PDF