Publications by authors named "Tetsuo Mioka"

Deep-sea organisms are subjected to extreme conditions; therefore, understanding their adaptive strategies is crucial. We utilize Saccharomyces cerevisiae as a model to investigate pressure-dependent protein regulation and piezo-adaptation. Using yeast deletion library analysis, we identified 6 poorly characterized genes that are crucial for high-pressure growth, forming novel functional modules associated with cell growth.

View Article and Find Full Text PDF

Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown.

View Article and Find Full Text PDF

The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast . We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes.

View Article and Find Full Text PDF

Sterols are important lipid components of the plasma membrane (PM) in eukaryotic cells, but it is unknown how the PM retains sterols at a high concentration. Phospholipids are asymmetrically distributed in the PM, and phospholipid flippases play an important role in generating this phospholipid asymmetry. Here, we provide evidence that phospholipid flippases are essential for retaining ergosterol in the PM of yeast.

View Article and Find Full Text PDF
Article Synopsis
  • - The study discovers a stable, micron-scale protein-depleted area in yeast cell membranes, called the 'void zone', formed under high-temperature conditions and in the absence of specific lipids.
  • - The void zone is characterized by the exclusion of certain proteins and lipids, and is enriched with ergosterol, requiring both ergosterol and sphingolipids to develop, similar to cholesterol-rich domains in artificial membranes.
  • - This finding suggests that living cell plasma membranes can undergo phase separation based on lipid composition and that these void zones often interact with vacuoles, creating another distinct membrane domain at their contact points.
View Article and Find Full Text PDF

Exosomes are extracellular vesicles that mediate the transport of intracellular molecules, including neurodegenerative agents. Exogenously administrated ceramides have been implicated in the acceleration of exosome production by neurons; however, the molecular machinery involved in this process is unknown. Here, we found that ceramides, especially those consisting of long fatty acids, were internalized into the endocytic pathway in neuroblastoma SH-SY5Y cells to induce exosome secretion through lysosome-associated protein transmembrane 4B (LAPTM4B).

View Article and Find Full Text PDF

In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants.

View Article and Find Full Text PDF

Lipid asymmetry in biological membranes is essential for various cell functions, such as cell polarity, cytokinesis, and apoptosis. P4-ATPases (flippases) are involved in the generation of such asymmetry. In Saccharomyces cerevisiae, the protein kinases Fpk1p/Fpk2p activate the P4-ATPases Dnf1p/Dnf2p by phosphorylation.

View Article and Find Full Text PDF

It is commonly observed that freshwater fish contain lower amounts of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), than marine fish species. In this study, we performed a detailed comparative analysis of phospholipids (PLs) and triacylglycerols (TAGs) from Gymnogobius isaza, a freshwater goby endemic to Lake Biwa inhabiting the lake bottom, and Gymnogobius urotaenia, a related goby that inhabits the shore of Lake Biwa. We found that tissues from G.

View Article and Find Full Text PDF

Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity.

View Article and Find Full Text PDF

In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast.

View Article and Find Full Text PDF

Elevated amyloid-β peptide (Aβ) in brain contributes to Alzheimer's disease (AD) pathogenesis. We demonstrated the presence of exosome-associated Aβ in the cerebrospinal fluid (CSF) of cynomolgus monkeys and APP transgenic mice. The levels of exosome-associated Aβ notably decreased in the CSF of aging animals.

View Article and Find Full Text PDF

In eukaryotic cells, phosphatidylserine (PS) is predominantly located in the cytosolic leaflet of the plasma membrane; this asymmetry is generated by an unknown mechanism. In this study, we used the PS-specific probe mRFP-Lact-C2 to investigate the possible involvement of type 4 P-type ATPases, also called phospholipid flippases, in the generation of this asymmetry in Saccharomyces cerevisiae. PS was not found in the trans-Golgi Network in wild-type cells, but it became exposed when vesicle formation was compromised in the sec7 mutant, and it was also exposed on secretory vesicles (SVs), as reported previously.

View Article and Find Full Text PDF

Spontaneous Ca(2+) oscillations are believed to contribute to the regulation of gene expression. Here we investigated whether and how the dynamics of Ca(2+) oscillations changed after sublethal preconditioning (PC) for PC-induced ischemic tolerance in neuron/astrocyte co-cultures. The frequency of spontaneous Ca(2+) oscillations significantly decreased between 4 and 8 h after the end of PC in both neurons and astrocytes.

View Article and Find Full Text PDF