Publications by authors named "Tetsuo Iwasawa"

Dibenzo[,]chrysene (DBC), which consists of a twisted naphthalene core with four fused benzene rings, is a promising framework for organic electronic materials. Therefore, the research for structure-property relationships is important for the design of DBC-based materials. Here, the electrochemical and spectroscopic properties of DBC derivatives were investigated, and the effects of substituents and torsion of the naphthalene moiety were examined based on density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Calix[6]arene hexacarboxylic acid binds instantly and with low symmetry to Pb, Sr and Ba. Later a highly symmetric up-down alternating conformation emerges. The solution structures are identical to their p-tert-butylcalix[6]arene hexacarboxylic acid counterparts.

View Article and Find Full Text PDF

The cyclization reaction of an epoxyalcohol is catalyzed by a synthetic cavitand receptor with an inwardly directed carboxylic acid function. The receptor features a hydrophobic pocket in which the substrate is bound and positioned to react in a regioselective manner. The nature of this substrate-catalyst complex and its dynamic properties were investigated by NMR methods and with the aid of a model compound lacking the epoxide function.

View Article and Find Full Text PDF

Tetraphenyl[5]cumulene (tetraphenylhexapentaene) underwent cyclotrimerization in refluxing toluene for 10-15 min to give a tricyclodecadiene derivative in 68% yield.

View Article and Find Full Text PDF

The reaction of carboxylic acids with carbodiimides is reviewed, and an "introverted" carboxylic acid is proposed as a means of trapping reactive intermediates along the reaction pathway. The introverted acid is a cavitand with the carboxylic function directed toward the floor of the cavity. Its reaction with diisopropyl carboodiimide gives a covalent adduct that is either the elusive O-acylisourea or the commonly encountered N-acylurea.

View Article and Find Full Text PDF

A cavitand functionalized with a Kemp's triacid derivative was used to catalyze the epoxide ring-opening cyclizations of 1,5-epoxyalcohols. A deep, cylindrical cavity containing electron-rich aromatic walls and an inwardly directed carboxylic acid displayed the necessary characteristics to bind different 1,5-epoxyalcohols and initiate their cyclization reactions. The reactions inside this synthetic receptor occurred in a catalytic and regioselective manner.

View Article and Find Full Text PDF

Labile hemiaminal intermediates are stabilized by binding in a deep cavitand with an introverted aldehyde functionality. The aldehyde is attached to the cavitand via an anthracene spacer that rotates rapidly about the cavitand rim. The half-lives of these hemiaminals vary from 30 min to over 100 h at ambient temperature, due to hydrogen bonding with the organized peptide-like framework at the cavitand rim.

View Article and Find Full Text PDF

The synthesis and characterization of two deepened cavitand hosts with introverted functionality--functional groups directed into the cavity--is described. Two functions can be introverted, alcohol and aldehyde, and they show the formation of hemiacetals and hemiketals on binding small guests with complementary functional groups. The structures of the bound hemiacetals are determined by 1D and 2D NMR studies.

View Article and Find Full Text PDF

Products of unfavorable chemical equilibria are not readily observed because their high energy and increased reactivity result in low concentrations. Biological macromolecules use binding forces to access unfavorable equilibria and stabilize reactive intermediates by isolating them from the medium. In a similar vein, we describe here a synthetic receptor that allows direct observation of labile tetrahedral intermediates: hemiaminals formed in the reaction of an aldehyde carbonyl group with amines.

View Article and Find Full Text PDF

[reaction: see text] Bowl-shaped phosphine ligands were found to be highly effective in Suzuki-Miyaura coupling of unactivated aryl chlorides, in which the depth of the bowl affected the catalytic activity considerably.

View Article and Find Full Text PDF

Reversible encapsulation allows the direct observation of the isolated molecules under ambient conditions, at equilibrium and in the liquid phase. Here we show that capsules can amplify and stabilize molecules that are present in only trace concentrations in solution. Evidence is given that reversible chemical reactions take place within the capsule.

View Article and Find Full Text PDF

[reaction: see text] This research was undertaken to explore the interior surface of a synthetic receptor 1.1 with arylpyridines as guests. The interior surface differentiates the guests through the recognition of their nitrogen atoms.

View Article and Find Full Text PDF

Self-assembled capsules are hosts that recognize and surround smaller molecule guests of appropriate size, shape, and chemical surfaces. The space available inside is a cage of fixed solvent molecules, many of which are aromatic. These aromatics provide anisotropic shielding to guests, and a map of induced magnetic shielding for the inner space can be obtained through nucleus-independent chemical shift calculations.

View Article and Find Full Text PDF

[reaction: see text] Oligomerization of Pd(OAc)2(L)2 (L = pyridine derivatives), a catalyst for the air oxidation of alcohols, is studied with MALDI TOF mass, using dithranol as the matrix. The degree of the Pd oligomerization is influenced by the pyridine ligands, and this ligand effect is similar to one observed for Pd black formation in the catalysis.

View Article and Find Full Text PDF

Palladium-diamine complexes catalyzed kinetic resolution of axially chiral 2,2'-dihydroxy-1,1'-biaryls by alcoholysis of vinyl ethers. The reaction proceeded with high selectivity for various kinds of biaryls. This process is applicable to not only binaphthols but also biphenols, which have been considered to be difficult for the enantioselective synthesis by known catalytic methods.

View Article and Find Full Text PDF

In homogeneous catalyst systems, there is the persistent problem that metal aggregation and precipitation cause catalyst decomposition and considerable loss of catalytic activity. Pd black formation is a typical example. Pd catalysts are known to easily aggregate and form Pd black, although they realize a wide variety of useful reactions in organic synthesis.

View Article and Find Full Text PDF

A lithium enolate of menthyl acetate added to PMP-imines, in the presence of an equimolar amount of lithium diisopropylamide, affords the Mannich-type addition products in high stereoselectivity. [reaction--see text]

View Article and Find Full Text PDF