Publications by authors named "Tetsuhiro Kanazawa"

Purpose: Epstein-Barr virus (EBV) infects B cells, as well as T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoid malignancies. In various tumor cells, mTOR performs an essential function together with Akt with regard to cell growth. We investigated the effects of mTOR inhibitors on EBV-associated T- and NK-cell lymphomas.

View Article and Find Full Text PDF

Purpose: Epstein-Barr virus (EBV) infects not only B cells but also T cells and natural killer (NK) cells, and T- and NK-cell lymphoproliferative diseases (T/NK-LPD) that are refractory to conventional chemotherapies may develop. To identify a molecular-targeted therapy for EBV-associated T/NK-LPDs, we investigated whether CC chemokine receptor 4 (CCR4) was expressed on EBV-infected T and/or NK cells and whether a humanized anti-CCR4 monoclonal antibody, mogamulizumab, was effective.

Experimental Design: CCR4 expression was examined in various cell lines.

View Article and Find Full Text PDF

The ubiquitous Epstein-Barr virus (EBV) infects not only B cells but also T cells and natural killer (NK) cells and is associated with various lymphoid malignancies. Recent studies have reported that histone deacetylase (HDAC) inhibitors exert anticancer effects against various tumor cells. In the present study, we have evaluated both the in vitro and in vivo effects of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on EBV-positive and EBV-negative T and NK lymphoma cells.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) LMP1 is a major oncoprotein expressed in latent infection. It functions as a TNFR family member and constitutively activates cellular signals, such as NFκB, MAPK, JAK/STAT and AKT. We here screened small molecule inhibitors and isolated HSP90 inhibitors, Radicicol and 17-AAG, as candidates that suppress LMP1 expression and cell proliferation not only in EBV-positive SNK6 Natural Killer (NK) cell lymphoma cells, but also in B and T cells.

View Article and Find Full Text PDF

The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system.

View Article and Find Full Text PDF