Publications by authors named "Tetin S"

Single-molecule methods, specifically single-molecule counting, convey high sensitivity in research applications. However, single-molecule counting experiments require specialized equipment or consumables to perform. We demonstrate the utility of using bright Streptavidin-Phycoerythrin (SA-PE) conjugates and an epifluorescence microscope, for single-molecule counting applications.

View Article and Find Full Text PDF

Background: Measuring anti-viral antibody affinity in blood plasma or serum is a rational quantitative approach to assess humoral immune response and acquired protection. Three common vaccines against SARS-CoV-2-Comirnaty developed by Pfizer/BioNTech, Spikevax developed by Moderna/NIAID, and Jcovden (previously Janssen COVID-19 Vaccine) developed by Johnson & Johnson/Janssen (J&J)-induce antibodies to a variety of immunogenic epitopes including the epitopes located in the ACE2 receptor-binding domain (RBD) of the spike protein. Blocking RBD with antibodies interferes with the binding of the virus to ACE2 thus protecting against infection.

View Article and Find Full Text PDF

Background: Measuring anti-spike protein antibodies in human plasma or serum is commonly used to determine prior exposure to SARS-CoV-2 infection and to assess the anti-viral protection capacity. According to the mass-action law, a lesser concentration of tightly binding antibody can produce the same quantity of antibody-antigen complexes as higher concentrations of lower affinity antibody. Thus, measurements of antibody levels reflect both affinity and concentration.

View Article and Find Full Text PDF

Every year, over 100 million units of donated blood undergo mandatory screening for HIV, hepatitis B, hepatitis C, and syphilis worldwide. Often, donated blood is also screened for human T cell leukemia-lymphoma virus, Chagas, dengue, Babesia, cytomegalovirus, malaria, and other infections. Several billion diagnostic tests are performed annually around the world to measure more than 400 biomarkers for cardiac, cancer, infectious, and other diseases.

View Article and Find Full Text PDF

Acridinium 9-carboxylic acid derivatives have been extensively used as chemiluminescent labels in diagnostic assays. Triggering acridinium with basic hydrogen peroxide produces a highly strained dioxetanone intermediate, which converts into an acridone in an electronically excited state and emits light at 420-440 nm. Here, we introduce a novel acridinium-fluorescein construct emitting at 530 nm, in which fluorescein is covalently attached to the acridinium N-10 nitrogen via a propyl sulfonamide linker.

View Article and Find Full Text PDF

Multicolor chemiluminescent acridinium derivatives were synthesized by attaching various common fluorophores to the N -acridinium position through a piperazine linker. Triggering of each acridinium derivative using alkaline hydrogen peroxide resulted in a chemiluminescence spectrum dominated by a strong emission (>95%) from the attached fluorophore. The highly quenched emission from the triggered acridinium, acting as a donor, points to a highly efficient intramolecular energy transfer in acridinium-based chemiluminophore-fluorophore tandems.

View Article and Find Full Text PDF

Single-molecule methods offer specificity in studying complex systems and dynamics, but they also offer high sensitivity for basic enumeration. We apply single-molecule TIRF to immunoassays by counting the number of target molecules captured on a streptavidin surface. We demonstrate the utility of using single-molecule counting on eluted detection conjugate, following the capture and sandwich formation portions of the assay having been completed on microparticles.

View Article and Find Full Text PDF

Solvent exposed lysine residues are abundantly present in many proteins. Their highly reactive ε-amino groups serve as universal targets for coupling with active esters of various extrinsic labels including a vast arsenal of fluorescent probes. Here, we describe fluorescent properties and preferential localization of two frequently used fluorescent labels, AlexaFluor488 (AF488) and Cy3, on the surface of a small highly soluble serum protein neutrophil gelatinase-associated lipocalin (NGAL), which serves as a diagnostic marker for acute kidney failure.

View Article and Find Full Text PDF

Super-resolution microscopy enables imaging of structures smaller than the diffraction limit. Single-molecule localization microscopy methods, such as photoactivation localization microscopy and stochastic optical reconstruction microscopy, reconstruct images by plotting the centroids of fluorescent point sources from a series of frames in which only a few molecules are fluorescing at a time. These approaches require simpler instrumentation than methods that depend on structured illumination and thus are becoming widespread.

View Article and Find Full Text PDF

Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe.

View Article and Find Full Text PDF

Unlike other known anti-fluorescein antibodies, the monoclonal antibody 43.1 is directed toward the fluorescein's carboxyl phenyl moiety. It demonstrates a very high affinity (KD ∼ 70 pM) and a fast association rate (kon ∼ 2 × 10(7) M(-1 ) s(-1) ).

View Article and Find Full Text PDF

Rapid preparation of high quality capture surfaces is a major challenge for surface-based single-molecule protein binding assays. Here we introduce a simple method to activate microfluidic chambers made from cyclic olefin copolymer for single-molecule imaging with total internal reflection fluorescence microscopy. We describe a surface coating protocol and demonstrate single-molecule imaging in off-the-shelf microfluidic parts that can be activated for binding assays within a few minutes.

View Article and Find Full Text PDF

Background: Molecular binding characteristics of several thyroid stimulating hormone (TSH) antibodies were determined for the TSH antigen, along with its closely related endogenous interfering hormones, follicle stimulating hormone (FSH), luteinizing hormone (LH) and chorionic gonadotropin (CG).

Methods: This data was compared to the same antibodies used in the low wash sandwich ELISA immunoassay system, the Point of Care i-STAT® immunoassay. From this information we developed binding criteria useful in the low wash i-STAT® immunoassay to permit good signal generation from TSH and low cross-reactivity from its interfering hormones.

View Article and Find Full Text PDF

In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.

View Article and Find Full Text PDF

We describe a compact scanning confocal fluorescence microscope capable of detecting particles concentrations less than 100 particles∕ml in ~15 min. The system mechanically moves a cuvette containing ~3 ml of sample. A relatively large confocal volume is observed within the cuvette using a 1 mm pinhole in front of a detection PMT.

View Article and Find Full Text PDF

In this article, we demonstrate how the application of biophysical tools facilitates the design of robust immunoassays. The binding characteristics of the reagents used in an immunoassay determine the assay response to the analyte concentrations. We applied several biophysical methods to obtain pertinent equilibrium and kinetic coefficients and used this information in the design of a microparticle-based immunoassay for detection of neutrophil gelatinase-associated lipocalin (NGAL), which is a new diagnostic marker of acute kidney injury (AKI).

View Article and Find Full Text PDF

Antibodies are excellent binding proteins that have found numerous applications in biological research, biotechnology, and medicine. Characterization of their ligand binding properties has long been, and continues to be, the focus of many researchers. Antibodies are also perfect test systems which can be used for the evaluation of newly introduced biophysical techniques.

View Article and Find Full Text PDF

Traditionally, characterization of protein molecules conjugated with molecular probes is performed by UV-vis spectroscopy. This method determines the average incorporation ratio but does not yield information about the label distribution. Electrospray ionization mass spectroscopy (ESI-MS) allows direct measurement of the fraction of protein containing a given number of labels.

View Article and Find Full Text PDF

We applied fluorescence fluctuation spectroscopy to resolve the binding heterogeneity of fluorescently labeled ligand derived from brain natriuretic peptide (BNP), a widely used diagnostic marker of heart failure, to a corresponding monoclonal antibody. This system includes three species: (1) free ligand molecules, (2) antibody with a single site occupied, and (3) antibody with both sites occupied. The method we used, time-integrated fluorescence cumulant analysis (TIFCA), utilizes cumulants of fluorescence fluctuations to resolve subpopulations of multiple fluorescent species freely diffusing in a solution.

View Article and Find Full Text PDF

Objective: We investigated the mechanism by which the ARCHITECT cyclosporine (CsA) chemiluminescent microparticle immunoassay (CMIA) eliminates cross-reactivity to CsA metabolites AM1 and AM9, despite its use of a monoclonal antibody which shows cross-reactivity in fluorescence polarization immunoassays.

Design And Methods: The CMIA was accomplished by incubating an extracted blood sample with magnetic microparticles coated with a very low amount of anti-CsA antibody. After a wash step the microparticles were incubated with a chemiluminescent CsA tracer, followed by a second wash step and measurement of chemiluminescence.

View Article and Find Full Text PDF

The recent remarkable rise in biomedical applications of antibodies and their recombinant constructs has shifted the interest in determination of antigenic epitopes in target proteins from the areas of protein science and molecular immunology to the vast fields of modern biotechnology. In this article, we demonstrated that measuring binding induced changes in two-dimensional NMR spectra enables rapid determination of antibody binding footprints on target protein antigens. Such epitopes recognized by six high-affinity monoclonal murine antibodies (mAbs) against human neutrophil gelatinase-associated lipocalin (NGAL) were determined by measuring chemical shifts or broadening of peaks in (1)H-(15)N-TROSY HSQC and (1)H-(13)C HSQC spectra of isotope-labeled NGAL occurring upon its binding to the antibodies.

View Article and Find Full Text PDF

The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction.

View Article and Find Full Text PDF

B-type natriuretic peptide (BNP) is a naturally secreted regulatory hormone that influences blood pressure and vascular water retention in human physiology. The plasma BNP concentration is a clinically recognized biomarker for various cardiovascular diseases. Quantitative detection of BNP can be achieved in immunoassays using the high-affinity monoclonal IgG1 antibody 106.

View Article and Find Full Text PDF