Publications by authors named "Tetiana Starodub"

7,7',8,8'-tetracyanoquinodimethane (TCNQ) is one of the most widely used effective surface electron acceptors in organic electronics and sensors, which opens up a very interesting field in electrochemical applications. In this review article, we outline the historical context of electrochemically stable selective electrode materials based on TCNQ and its derivatives and their development, their electrochemical characteristics, and the experimental aspects of their electrochemical applications. TCNQ-modified electrodes are characterized by long-term stability, reproducibility, and a low detection limit compared to other sensors; thus, their use can increase determination speed and flexibility and reduce investigation costs.

View Article and Find Full Text PDF

The (N-Xy-Qn)(TCNQ) anion-radical salt characterized by tetramerized stacks of the TCNQ acceptor molecules has been synthesized and characterized using vibrational spectroscopy and electrical resistivity measurements. The bond lengths analysis based on the crystal structure data, indicates that the TCNQ molecules are non-uniformly charged with -0.83 e localized on the inner B molecules and -0.

View Article and Find Full Text PDF

We report a new antiferromagnetic radical-anion salt (RAS) formed from 7,7,8,8-tetracyanquinonedimethane (TCNQ) anion and 2-amino-5-chloro-pyridine cation with the composition of (N-CH-2-NH-5Cl-Py)(TCNQ)(CHCN). The crystallographic data indicates the formation of (TCNQ) radical-anion π-dimers in the synthesized RAS. Unrestricted density functional theory calculations show that the formed π-dimers characterize with strong π-stacking "pancake" interactions, resulting in high electronic coupling, enabling efficient charge transfer properties, but π-dimers cannot be stable in the isolated conditions as a result of strong Coulomb repulsions.

View Article and Find Full Text PDF