Background: Bisphenol S (BPS) is the main substitute for bisphenol A (BPA), a well-known plasticiser and endocrine disruptor. BPS disrupts ovarian function in several species. Moreover, a few studies have reported that the effects of BPS might be modulated by the metabolic status, and none have characterised the granulosa cell (GC) proteome after chronic BPS exposure.
View Article and Find Full Text PDFBisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis.
View Article and Find Full Text PDFBackground: Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ).
View Article and Find Full Text PDFBisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species.
View Article and Find Full Text PDFBisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups.
View Article and Find Full Text PDFBisphenol A (BPA), an endocrine disruptor, has been replaced by structural analogues including bisphenol S (BPS). BPA and BPS exhibited similar effects regarding reproductive functions. Moreover, metabolic status and lipid metabolism are related to female fertility and could worsen BPS effects.
View Article and Find Full Text PDFStudy Question: Do plastic laboratory consumables and cell culture media used in ART contain bisphenols?
Summary Answer: The majority of human embryo culture media assessed contained bisphenol S close to the nanomolar concentration range, while no release of bisphenols by plastic consumables was detected under routine conditions.
What Is Known Already: The deleterious effect of the endocrine disruptor bisphenol A (BPA) on female fertility raised concerns regarding ART outcome. BPA was detected neither in media nor in the majority of plastic consumables used in ART; however, it might have already been replaced by its structural analogs, including bisphenol S (BPS).
Bisphenol S (BPS) is a structural analog of the endocrine disruptor bisphenol A (BPA); it is the main BPA replacement in the plastics industry. Previous studies have shown that BPA and BPS exhibit similar effects on reproduction in fish and rodent species. BPS reportedly alters steroidogenesis in bovine granulosa cells.
View Article and Find Full Text PDFBisphenols, plasticisers used in food containers, can transfer to food. Bisphenol A (BPA) has been described as an endocrine disruptor and consequently banned from the food industry in several countries. It was replaced by a structural analogue, Bisphenol S (BPS).
View Article and Find Full Text PDF