Publications by authors named "Tete Severien Barigah"

Establishing drying-limits for mortality of different tree species and understanding the anatomical and physiological traits involved is crucial to predict forests' responses to climate change. The xylem of Eucalyptus camaldulensis presents a complex of solitary vessels surrounded by different imperforate tracheary elements and parenchyma that influence, in a poorly known way, its hydraulic functioning. We aimed at describing the dynamics of embolism propagation in this type of xylem, seeking any vessel-size pattern, and unraveling the threshold of xylem embolism leading to nonrecovery after drought in E.

View Article and Find Full Text PDF

Background And Aims: Extreme water stress episodes induce tree mortality, but the physiological mechanisms causing tree death are still poorly understood. This study tests the hypothesis that a potted tree's ability to survive extreme monotonic water stress is determined by the cavitation resistance of its xylem tissue.

Methods: Two species were selected with contrasting cavitation resistance (beech and poplar), and potted juvenile trees were exposed to a range of water stresses, causing up to 100 % plant death.

View Article and Find Full Text PDF

Understanding drought tolerance mechanisms requires knowledge about the induced weakness that leads to tree death. Bud survival is vital to sustain tree growth across seasons. We hypothesized that the hydraulic connection of the bud to stem xylem structures was critical for its survival.

View Article and Find Full Text PDF

Xylem cavitation resistance is a key physiological trait correlated with species tolerance to extreme drought stresses. Little is known about the genetic variability and phenotypic plasticity of this trait in natural tree populations. Here we measured the cavitation resistance of 17 Fagus sylvatica populations representative of the full range of the species in Europe.

View Article and Find Full Text PDF

Xylem vulnerability to cavitation is a key parameter in understanding drought resistance of trees. We determined the xylem water pressure causing 50% loss of hydraulic conductivity (P(50)), a proxy of vulnerability to cavitation, and we evaluated the variability of this trait at tree and population levels for Fagus sylvatica. We checked for the effects of light on vulnerability to cavitation of stem segments together with a time series variation of P(50).

View Article and Find Full Text PDF

Molecular and physiological studies in walnut (Juglans regia) are combined to establish the putative role of leaf plasma membrane aquaporins in the response of leaf hydraulic conductance (K(leaf)) to irradiance. The effects of light and temperature on K(leaf) are described. Under dark conditions, K(leaf) was low, but increased by 400% upon exposure to light.

View Article and Find Full Text PDF