Neuregulin 4 (Nrg4) is an adipokine that belongs to the epidermal growth factor family and binds to ErbB4 tyrosine kinase receptors. In 3T3-L1 adipocytes, the downregulation of expression enhances inflammation and autophagy, resulting in insulin resistance. Here, we searched for the causes of this phenotype.
View Article and Find Full Text PDFBrown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells.
View Article and Find Full Text PDFThe adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes.
View Article and Find Full Text PDFMany new discoveries in Life Sciences cannot be translated into products, services or new applications to improve human health. Translational medicine, defined as "from bench to bedside", refers to the transfer of results or new knowledge achieved in the laboratory into health innovation. We aim to review the state of art of translational medicine, its relationship with innovation processes and the different perspectives to consider.
View Article and Find Full Text PDFAim: To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) decavanadate (B6V10), previously shown to exert antidiabetic effects in rodent models, such as lowering free fatty acids (FFA) and glucose circulating levels.
Methods: Adipose tissue (AT) samples were obtained after informed consent from overweight women undergoing plastic surgery. Comparison of the effects of B6V10 and reference antilipolytic agents (insulin, benzylamine, vanadate) on the lipolytic activity was performed on adipocytes freshly isolated from rat, mouse and human AT.
A precise balance between protein degradation and synthesis is essential to preserve skeletal muscle mass. Here, we found that TP53INP2, a homolog of the Drosophila melanogaster DOR protein that regulates autophagy in cellular models, has a direct impact on skeletal muscle mass in vivo. Using different transgenic mouse models, we demonstrated that muscle-specific overexpression of Tp53inp2 reduced muscle mass, while deletion of Tp53inp2 resulted in muscle hypertrophy.
View Article and Find Full Text PDFThe hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies.
View Article and Find Full Text PDFBeta3-adrenergic agonists are well-recognited to promote lipid mobilisation and adipose tissue remodeling in rodents, leading to multilocular fat cells enriched in mitochondria. However, effects of beta3-adrenergic agonists on glucose transport are still controversial. In this work, we studied in white adipose tissue (WAT) the influence of sustained beta3-adrenergic stimulation on the glucose transport and on the mitochondrial monoamine oxidase (MAO) activity.
View Article and Find Full Text PDFSemicarbazide-sensitive amine oxidase (SSAO) is known to increase during in vitro adipogenesis and to be one of the most highly expressed membrane proteins of white adipocytes. Although less well documented, mitochondrial monoamine oxidases (MAOs) are also present in adipocytes and share with SSAO the capacity to generate hydrogen peroxide. This work therefore aimed to compare several biologic effects of MAO and SSAO substrates in 3T3-F442A adipocytes.
View Article and Find Full Text PDFPlasma level of the protein VAP-1/SSAO (Vascular Adhesion Protein-1/Semicarbazide-Sensitive Amine Oxidase) is increased in diabetes and/or obesity and may be related to vascular complications associated to these pathologies. The aim of this work was to complete a preceding study where we described the role played by some hormones or metabolites, implicated in diabetes and/or obesity, in the regulation of the release of VAP-1/SSAO by 3T3-L1 adipocytes. Here we focused on the previously observed effect produced by TNFalpha in the release of VAP-1/SSAO and studied the effect of a beta-adrenergic compound, isoproterenol.
View Article and Find Full Text PDFPharmacol Res
December 2005
It has been reported that benzylamine reduces blood glucose in rabbits, stimulates hexose uptake, and inhibits lipolysis in mouse, rabbit, and human adipocytes. In the presence of vanadate, benzylamine is also able to improve glucose disposal in normoglycaemic and diabetic rats. Such insulin-mimicking properties are the consequence of hydrogen peroxide production during benzylamine oxidation by semicarbazide-sensitive amine oxidase (SSAO).
View Article and Find Full Text PDFMitofusin-2 (Mfn2) is a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells and mutations in the Mfn2 gene cause Charcot-Marie-Tooth neuropathy type 2A. Here, we show that Mfn2 loss-of-function inhibits pyruvate, glucose and fatty acid oxidation and reduces mitochondrial membrane potential, whereas Mfn2 gain-of-function increases glucose oxidation and mitochondrial membrane potential. As to the mechanisms involved, we have found that Mfn2 loss-of-function represses nuclear-encoded subunits of OXPHOS complexes I, II, III and V, whereas Mfn2 overexpression induced the subunits of complexes I, IV and V.
View Article and Find Full Text PDFWe previously reported that substrates of semicarbazide-sensitive amine oxidase in combination with low concentrations of vanadate exert potent insulin-like effects. Here we performed homology modeling of the catalytic domain of mouse SSAO/VAP-1 and searched through chemical databases to identify novel SSAO substrates. The modeling of the catalytic domain revealed that aromatic residues Tyr384, Phe389, and Tyr394 define a pocket of stable size that may participate in the binding of apolar substrates.
View Article and Find Full Text PDFBiogenic amines like tyramine, methylamine and the non-naturally occuring amine, benzylamine, have been described to promote adipose conversion of murine 3T3 preadipocytes. To further investigate these novel effects of amines, we studied whether they selectively mimic the long-term adipogenic action of insulin. To this aim, we decided to use the 3T3-L1 cell line since this model needs a complex combination of inducers to trigger the differentiation programme: insulin, isobutylmethylxanthine (IBMX, an activator of cAMP-signal transduction pathway) and the synthetic glucocorticoid, dexamethasone.
View Article and Find Full Text PDFSemicarbazide-sensitive amine oxidase (SSAO) is highly expressed in adipose cells, and substrates of SSAO such as benzylamine in combination with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 recruitment in mouse 3T3-L1 adipocytes and in isolated rat adipocytes. Here we examined whether this combination of molecules also stimulates glucose transport in adipocytes from streptozotocin-induced diabetic rats and from Goto-Kakizaki diabetic rats. As previously reported, adipocytes obtained from streptozotocin-induced diabetic rats, showed a reduced stimulation of glucose transport in response to insulin.
View Article and Find Full Text PDFSemicarbazide-sensitive amine oxidase (SSAO) is very abundant at the plasma membrane in adipocytes. The combination of SSAO substrates and low concentrations of vanadate markedly stimulates glucose transport and GLUT4 glucose transporter recruitment to the cell surface in rat adipocytes by a mechanism that requires SSAO activity and hydrogen peroxide formation. Substrates of SSAO such as benzylamine or tyramine in combination with vanadate potently stimulate tyrosine phosphorylation of both insulin-receptor substrates 1 (IRS-1) and 3 (IRS-3) and phosphatidylinositol 3-kinase (PI 3-kinase) activity in adipose cells, which occurs in the presence of a weak stimulation of insulin-receptor kinase.
View Article and Find Full Text PDFIn this study we have explored whether the bifunctional protein semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1) represents a novel target for type 2 diabetes. To this end, Goto-Kakizaki (GK) diabetic rats were treated with the SSAO substrate benzylamine and with low ineffective doses of vanadate previously shown to have antidiabetic effects in streptozotocin-induced diabetic rats. The administration of benzylamine in combination with vanadate in type 2 diabetic rats acutely stimulated glucose tolerance, and the chronic treatment normalized hyperglycemia, stimulated glucose transport in adipocytes, and reversed muscle insulin resistance.
View Article and Find Full Text PDFTyramine and benzylamine have been described as stimulators of glucose transport in adipocytes. This effect is dependent on amine oxidation by monoamine oxidase (MAO) or semicarbazide-sensitive amine oxidase (SSAO) and on the subsequent hydrogen peroxide formation as already demonstrated by blockade with oxidase inhibitors or antioxidants and potentiation with vanadate. In this work, we extended these observations to skeletal muscle and cardiac myocytes using in vitro and in vivo approaches.
View Article and Find Full Text PDFSemicarbazide-sensitive amine oxidase (SSAO) is highly expressed in adipose cells, and substrates of SSAO, such as benzylamine, in combination with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 recruitment in 3T3-L1 and rat adipocytes. Here we examined whether acute and chronic administration of benzylamine and vanadate in vivo enhances glucose tolerance and reduces hyperglycemia in diabetic rats. Acute intravenous administration of these drugs enhanced glucose tolerance in nondiabetic rats and in streptozotocin (STZ)-induced diabetic rats.
View Article and Find Full Text PDFWe have previously reported that substrates of monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) exert short-term insulin-like effects in rat adipocytes, such as stimulation of glucose transport. In the present work, we studied whether these substrates could also mimic long-term actions of insulin. Adipose differentiation of 3T3 F442A cells, which is highly insulin-dependent, served as a model to test the effects of sustained administration of amine oxidase substrates.
View Article and Find Full Text PDFIt has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the signal-transduction pathway activated in rat adipocytes. We found that several SSAO substrates (benzylamine, tyramine, methylamine, n-decylamine, histamine, tryptamine or beta-phenylethylamine), in combination with low concentrations of vanadate, stimulate glucose transport in isolated rat adipocytes.
View Article and Find Full Text PDFGlucose constitutes a major fuel for the heart, and high glucose uptake during fetal development is coincident with the highest level of expression of the glucose transporter GLUT-1 during life. We have previously reported that GLUT-1 is repressed perinatally in rat heart, and GLUT-4, which shows a low level of expression in the fetal stage, becomes the main glucose transporter in the adult. Here, we show that the perinatal expression of GLUT-1 and GLUT-4 glucose transporters in heart is controlled directly at the level of gene transcription.
View Article and Find Full Text PDFInsulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production.
View Article and Find Full Text PDFGlucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake.
View Article and Find Full Text PDFIt has been reported that benfluorex ameliorates the insulin resistance induced by high-fat feeding when its administration is initiated at the same time as the change in diet. Here we have examined whether benfluorex reverses insulin resistance when this is established in middle-aged rats chronically maintained on a high-fat diet. Untreated 12-month-old rats that had been subjected to a high-fat diet for the last 6 months showed markedly lower insulin-induced stimulation of 2-deoxyglucose uptake by strips of soleus muscle and a reduced expression of GLUT4 glucose carriers in skeletal muscle.
View Article and Find Full Text PDF