Publications by authors named "Tessy Iype"

Introduction of magnetisable solid phase extraction procedures have provided various advantages over spin-column based extraction techniques. Although certain methods for magnetic bead based extraction of DNA from human saliva already exist, there is still a need to address the inadequate purity profile and low yield which occur due to the inefficiency of extraction methods. Hence, an improved method for DNA extraction from human saliva using uncoated magnetic nanoparticles (MNPs) intended to resolve the issues mentioned above is described here.

View Article and Find Full Text PDF

Development of efficient and cost effective vaccines have been recognized as the primary concern to improve the overall healthcare in a country. In order to achieve this goal, more improved and powerful adjuvants need to be developed. Lacking in the self-adjuvanting immuno-modulatory constituents, vaccines exhibit lower immunogenicity.

View Article and Find Full Text PDF

A method for immobilization of functional proteins by chemical cross-linking of the protein of interest and uncoated iron oxide nanoparticles in the presence of Epichlorohydrin is described. As a result of the cross-linking, the proteins form a matrix in which the particles get entrapped. The optimum concentration of Epichlorohydrin that facilitates immobilization of protein without affecting the functional properties of the protein was determined.

View Article and Find Full Text PDF

The importance of regulatory T cells (Tregs) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. In this article, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP-1) as an endogenous brake and modifier of the suppressive ability of Tregs; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Tregs to suppress inflammation in a mouse model.

View Article and Find Full Text PDF

The tyrosine phosphatase Src homology 2-containing phosphatase 1 (SHP-1) is a key negative regulator of TCR-mediated signaling. Previous studies have shown that in T cells a fraction of SHP-1 constitutively localizes to membrane microdomains, commonly referred to as lipid rafts. Although this localization of SHP-1 is required for its functional regulation of T cell activation events, how SHP-1 is targeted to the lipid rafts was unclear.

View Article and Find Full Text PDF

The homeodomain factor Pdx-1 regulates an array of genes in the developing and mature pancreas, but whether regulation of each specific gene occurs by a direct mechanism (binding to promoter elements and activating basal transcriptional machinery) or an indirect mechanism (via regulation of other genes) is unknown. To determine the mechanism underlying regulation of the insulin gene by Pdx-1, we performed a kinetic analysis of insulin transcription following adenovirus-mediated delivery of a small interfering RNA specific for pdx-1 into insulinoma cells and pancreatic islets to diminish endogenous Pdx-1 protein. insulin transcription was assessed by measuring both a long half-life insulin mRNA (mature mRNA) and a short half-life insulin pre-mRNA species by real-time reverse transcriptase-PCR.

View Article and Find Full Text PDF

In the pancreas, the NK homeodomain transcription factor Nkx6.1 is required for the development of beta-cells and is believed to function as a potent repressor of transcription upon binding to A/T-rich sequences within the promoter region of target genes. Because the nkx6.

View Article and Find Full Text PDF