The switching response in organic electrochemical transistors (OECT) is a basic effect in which a transient current occurs in response to a voltage perturbation. This phenomenon has an important impact on different aspects of the application of OECT, such as the equilibration times, the hysteresis dependence on scan rates, and the synaptic properties for neuromorphic applications. Here we establish a model that unites vertical ion diffusion and horizontal electronic transport for the analysis of the time-dependent current response of OECTs.
View Article and Find Full Text PDFElectrical doping of semiconductors is a revolutionary development that enabled many electronic and optoelectronic technologies. While doping of many inorganic and organic semiconductors is well-established, controlled electrical doping of metal halide perovskites (MHPs) is yet to be demonstrated. In this work, efficient n- and p-type electrical doping of MHPs by co-evaporating the perovskite precursors alongside organic dopant molecules is achieved.
View Article and Find Full Text PDFSynaptic transistors (STs) with a gate/electrolyte/channel stack, where mobile ions are electrically driven across the solid electrolyte, have been considered as analog weight elements for neuromorphic computing. The current (I) between the source and drain in the ST is analogously updated by gate voltage (V) pulses, enabling high pattern recognition accuracy in neuromorphic systems; however, the governing physical mechanisms of the ST are not fully understood yet. Our previous physics-based simulation study showed that ion movement in the electrolyte, rather than the electrochemical reactions that occur in the channel, plays an important role in switching.
View Article and Find Full Text PDFThe roll-to-roll printing production process for hybrid organic-inorganic perovskite solar cells (PSCs) demands thick and high-performance solution-based diffusion blocking layers. Inverted (p-i-n) PSCs usually incorporate solution-processed PCBM as the electron-transporting layer (ETL), which offers good electron charge extraction and passivation of the perovskite active layer grain boundaries. Thick fullerene diffusion blocking layers could benefit the long-term lifetime performance of inverted PSCs.
View Article and Find Full Text PDFDoped heavy metal-free III-V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p-n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short-wave IR detection and emission applications, manifest heavy n-type character poising a challenge for their transition to p-type behavior. The p-type doping of InAs NCs is presented with Zn - enabling control over the charge carrier type in InAs QDs field effect transistors.
View Article and Find Full Text PDFThe mixed ionic-electronic nature of lead halide perovskites makes their performance in solar cells complex in nature. Ion migration is often associated with negative impacts-such as hysteresis or device degradation-leading to significant efforts to suppress ionic movement in perovskite solar cells. In this work, we demonstrate that ion trapping at the perovskite/electron transport layer interface induces band bending, thus increasing the built-in potential and open-circuit voltage of the device.
View Article and Find Full Text PDFSchottky diodes based on inexpensive materials that can be processed using simple manufacturing methods are of particular importance for the next generation of flexible electronics. Although a number of high-frequency n-type diodes and rectifiers have been demonstrated, the progress with p-type diodes is lagging behind, mainly due to the intrinsically low conductivities of existing p-type semiconducting materials that are compatible with low-temperature, flexible, substrate-friendly processes. Herein, we report on CuSCN Schottky diodes, where the semiconductor is processed from solution, featuring coplanar Al-Au nanogap electrodes (<15 nm), patterned via adhesion lithography.
View Article and Find Full Text PDFThe low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied.
View Article and Find Full Text PDFTwo derivatives of [1]benzothieno[3,2-b][1]benzothiophene (BTBT), namely, 2,7-dioctyl-BTBT (C8-BTBT) and 2,7-diphenyl-BTBT (DPh-BTBT), belonging to one of the best performing organic semiconductor (OSC) families, have been employed to investigate the influence of the substitutional side groups on the properties of the interface created when they are in contact with dopant molecules. As a molecular p-dopant, the fluorinated fullerene CF is used because of its adequate electronic levels and its bulky molecular structure. Despite the dissimilarity introduced by the OSC film termination, dopant thin films grown on top adopt the same (111)-oriented FCC crystalline structure in the two cases.
View Article and Find Full Text PDFWe provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of CF depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C.
View Article and Find Full Text PDFThe present work assesses improved carrier injection in organic field-effect transistors by contact doping and provides fundamental insight into the multiple impacts that the dopant/semiconductor interface details have on the long-term and thermal stability of devices. We investigate donor [1]benzothieno[3,2-]-[1]benzothiophene (BTBT) derivatives with one and two octyl side chains attached to the core, therefore constituting asymmetric (BTBT-C8) and symmetric (C8-BTBT-C8) molecules, respectively. Our results reveal that films formed out of the asymmetric BTBT-C8 expose the same alkyl-terminated surface as the C8-BTBT-C8 films do.
View Article and Find Full Text PDFOrganic photodiodes (OPDs) for its interesting optoelectronic properties has the potential to be utilized with complementary metal-oxide-semiconductor (CMOS) circuit for imaging, automotive, and security based applications. To achieve such a hybrid device as an image sensor, it is imperative that the quality of the OPD remains high on the CMOS substrate and that it has a well-connected optoelectronic interface with the underneath readout integrated circuit (ROIC) for efficient photogeneration and signal readout. Here, we demonstrate seamless integration of a thermally deposited visible light sensitive small molecule OPD on a standard commercial CMOS substrate using optimized doped PCBM buffer layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
We report an optoelectronic device consisting of a solution-processed indium gallium zinc oxide (IGZO) thin-film transistor and vacuum-deposited small organic molecules. Depending on the configurations of the organic materials, either bulk heterojunction or planar heterojunction (PHJ), the device assumes the functionality of either a photosensor or a photoinduced memory, respectively. Under λ = 625 nm light illumination, the photosensor shows response and recovery time of ∼50 ms, responsivity of ∼5 mA/W, sensitivity above 10, and a linear response.
View Article and Find Full Text PDFWe report the magnetic field dependence of the magneto-photocurrent (MPC) in organic light emitting diodes made of homo-polymer organic layers and compare it to the measured magneto-conductance (MC) in the same diodes. We find that the response MPC(B) is very different from MC(B) in at least two respects. (a) The low field (B < 50 mT) response of MPC(B) is narrower by a factor of ∼5 from that of MC(B).
View Article and Find Full Text PDFIn November 2016, the urban dry streams (wadis) of the city of Haifa in Northern Israel were on fire. However, it was not just the fire that was threatening urban areas. Post-fire precipitation could turn into urban floods, further aggravating the fire damages.
View Article and Find Full Text PDFEngineering the energetics of perovskite photovoltaic devices through deliberate introduction of dipoles to control the built-in potential of the devices offers an opportunity to enhance their performance without the need to modify the active layer itself. In this work, we demonstrate how the incorporation of molecular dipoles into the bathocuproine (BCP) hole-blocking layer of inverted perovskite solar cells improves the device open-circuit voltage () and, consequently, their performance. We explore a series of four thiaazulenic derivatives that exhibit increasing dipole moments and demonstrate that these molecules can be introduced into the solution-processed BCP layer to effectively increase the built-in potential within the device without altering any of the other device layers.
View Article and Find Full Text PDFSolution processed γ-FeO nanoparticles via the solvothermal colloidal synthesis in conjunction with ligand-exchange method are used for interface modification of the top electrode in inverted perovskite solar cells. In comparison to more conventional top electrodes such as PC(70)BM/Al and PC(70)BM/AZO/Al, we show that incorporation of a γ-FeO provides an alternative solution processed top electrode (PC(70)BM/γ-FeO/Al) that not only results in comparable power conversion efficiencies but also improved thermal stability of inverted perovskite photovoltaics. The origin of improved stability of inverted perovskite solar cells incorporating PC(70)BM/ γ-FeO/Al under accelerated heat lifetime conditions is attributed to the acidic surface nature of γ-FeO and reduced charge trapped density within PC(70)BM/ γ-FeO/Al top electrode interfaces.
View Article and Find Full Text PDFWe assessed mothers' self-reported gains from a postpartum home-visiting (HV) project in which home visitors are volunteer mothers from the community. Hypotheses were that gains are positively related to (a) mothers' felt-closeness with their home visitor, (b) mothers' level of sociodemographic risk, and (c) the home visitors' preproject training in support services for families or children (Professionalism). One hundred sixty-four clients returned written evaluations of the HV project.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
It is generally considered that the injection of charges into an active layer of an organic light-emitting diode (OLED) is solely determined by the energetic injection barrier formed at the device interfaces. Here, we demonstrate that the density of surface states of the electron-injecting ZnO layer has a profound effect on both the charge injection and the overall performance of the OLED device. Introducing a dopant into ZnO reduces both the energy depth and density of surface states without altering the position of the energy levels-thus, the magnitude of the injection barrier formed at the organic/ZnO interface remains unchanged.
View Article and Find Full Text PDFBackground and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference.
View Article and Find Full Text PDFOrganic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented.
View Article and Find Full Text PDFA ternary organic semiconducting blend composed of a small-molecule, a conjugated polymer, and a molecular p-dopant is developed and used in solution-processed organic transistors with hole mobility exceeding 13 cm(2) V(-1) s(-1) (see the Figure). It is shown that key to this development is the incorporation of the p-dopant and the formation of a vertically phase-separated film microstructure.
View Article and Find Full Text PDFEnviron Manage
September 2016
Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011).
View Article and Find Full Text PDF