Background: Alzheimer's disease cerebrospinal fluid (CSF) biomarkers amyloid-β 1-42 (Aβ42), total tau (T-tau), and phosphorylated tau 181 (P-tau181) are widely used. However, concentration gradient of these biomarkers between intraventricular (V-CSF) and lumbar CSF (L-CSF) has been demonstrated in idiopathic normal pressure hydrocephalus (iNPH), potentially affecting clinical utility.
Objective: Here we aim to provide conversion factors for clinical and research use between V-CSF and L-CSF.
Background: Longitudinal changes in cerebrospinal fluid (CSF) biomarkers are seldom studied. Furthermore, data on biomarker gradient between lumbar (L-) and ventricular (V-) compartments seems to be discordant.
Objective: To examine alteration of CSF biomarkers reflecting Alzheimer's disease (AD)-related amyloid-β (Aβ) aggregation, tau pathology, neurodegeneration, and early synaptic degeneration by CSF shunt surgery in idiopathic normal pressure hydrocephalus (iNPH) in relation to AD-related changes in brain biopsy.
Background: Atabecestat, a potent brain-penetrable inhibitor of BACE1 activity that reduces CSF amyloid beta (Aβ), was developed for oral treatment for Alzheimer's disease (AD). The long-term safety and effect of atabecestat on cognitive performance in participants with predementia AD in two phase 2 studies were assessed.
Methods: In the placebo-controlled double-blind parent ALZ2002 study, participants aged 50 to 85 years were randomized (1:1:1) to placebo or atabecestat 10 or 50 mg once daily (later reduced to 5 and 25 mg) for 6 months.
Amyloid β (Aβ) and tau are key hallmark features of Alzheimer's disease (AD) neuropathology. The interplay of Aβ and tau for cognitive impairment in early AD was examined with cross-sectional analysis, measured by cerebrospinal fluid biomarkers (Aβ, total tau [t-tau], and phosphorylated tau [p-tau181P]), and on cognitive performance by the repeatable battery for assessment of neuropsychological status (RBANS). Participants (n = 246) included cognitively normal (Aβ-), mild cognitively impaired (Aβ-), preclinical AD (Aβ+), and prodromal AD (Aβ+).
View Article and Find Full Text PDFBackground: β-Secretase enzyme (BACE) inhibition has been proposed as a priority treatment mechanism for Alzheimer's disease (AD), but treatment initiation may need to be very early. We present proof of mechanism of atabecestat (also known as JNJ-54861911), an oral BACE inhibitor for the treatment of AD, in Caucasian and Japanese populations with early AD who do not show signs of dementia.
Methods: In two similarly designed phase I studies, a sample of amyloid-positive elderly patients comprising 45 Caucasian patients with early AD diagnosed as preclinical AD (n = 15, Clinical Dementia Rating [CDR] = 0) or with mild cognitive impairment due to AD (n = 30, CDR = 0.
Background: Detection of pathological tau aggregates could facilitate clinical diagnosis of Alzheimer's disease (AD) and monitor drug effects in clinical trials. S-[18F]THK-5117 could be a potential tracer to detect pathological tau deposits in brain. However, no previous study have correlated S-[18F]THK-5117 uptake in PET with brain biopsy verified tau pathology in vivo.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) plays an important role in the development and maintenance of embryonic dopaminergic (DA) neurons in the midbrain. To study the function of TGF-β signaling in the adult nigrostriatal system, we generated transgenic mice with reduced TGF-β signaling in mature neurons. These mice display age-related motor deficits and degeneration of the nigrostriatal system.
View Article and Find Full Text PDFHuman pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model.
View Article and Find Full Text PDFThe β-site amyloid-β protein precursor (AβPP) cleaving enzyme-1 (BACE1) is the rate limiting enzyme in the generation of amyloid-β peptide (Aβ) from AβPP, one of the major pathways in Alzheimer's disease (AD) pathology. Increased BACE1 levels and activity have been reported in the brain of patients with sporadic AD. Therefore, changes of BACE1 levels in the cerebrospinal fluid (CSF) have also been investigated as a possible biomarker of the disease.
View Article and Find Full Text PDFWith the increasing appreciation of the role of Notch in development and disease, measuring its cleavage and signaling activity in cellular systems has become important. Here we describe a cell-based method to analyze the cleavage of Notch at the S3 site by γ-secretase. HEK cells are transfected with an N-terminal truncated and myc-labeled mNotchΔE construct which can be easily and quantitatively detected by western blotting.
View Article and Find Full Text PDFProteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD.
View Article and Find Full Text PDFAlzheimers Res Ther
May 2014
With 27 million people affected by Alzheimer's disease (AD), any proposal of a novel avenue for drug development is hot news. When Cramer and colleagues proposed last year that they could tackle AD pathology in an AD mouse model with bexarotene, a drug already in use in the clinic for other diseases, the news was covered worldwide by the popular press. Apolipoprotein E4 is the strongest genetic risk factor for AD and bexarotene appeared to exert spectacular effects on AD pathology when tested in APP/PS1 transgenic mice.
View Article and Find Full Text PDFIn the Alzheimer's disease (AD) brain, accumulation of Aβ1-42 peptides is suggested to initiate a cascade of pathological events. To date, no treatments are available that can reverse or delay AD-related symptoms in patients. In the current study, we introduce a new Aβ toxicity inhibitor, SEN1500, which in addition to its block effect on Aβ1-42 toxicity in synaptophysin assays, can be administered orally and cross the blood-brain barrier without adverse effects in mice.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a consequence of degenerative brain pathology with amyloid plaque deposition and neurofibrillary tangle formation. These distinct aspects of AD neuropathology have been suggested to induce a cascade of pathological events ultimately leading to neurodegeneration as well as cognitive and behavioral decline. Amyloid and tau neuropathology is known to develop along distinct stages and affect parts of the brain differentially.
View Article and Find Full Text PDFCramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) tested bexarotene as a potential β-amyloid-lowering drug for Alzheimer's disease (AD).
View Article and Find Full Text PDFLowering the production and accumulation of Aβ has been explored as treatment for Alzheimer's disease (AD), because Aβ is postulated to play an important role in the pathogenesis of AD. 5-HT4 receptors are an interesting drug target in this regard, as their activation might stimulate α-secretase processing, which increases sAPPα and reduces Aβ, at least according to the central dogma in APP processing. Here we describe a novel high-affinity 5-HT4 receptor agonist SSP-002392 that, in cultured human neuroblastoma cells, potently increases the levels of cAMP and sAPPα at 100-fold lower concentrations than the effective concentrations of prucalopride, a known selective 5-HT4 receptor agonist.
View Article and Find Full Text PDFProdomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis.
View Article and Find Full Text PDFThe metalloproteinase and major amyloid precursor protein (APP) alpha-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10(-/-) mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis.
View Article and Find Full Text PDFTransforming growth factor-beta1 (TGF-beta1) has central functions in development, tissue maintenance, and repair and has been implicated in major diseases. We discovered that TGF-beta1 contains several amphipathic helices and hydrophobic domains similar to apolipoprotein E (apoE), a protein involved in lipoprotein metabolism. Indeed, TGF-beta1 associates with lipoproteins isolated from human plasma, cultured liver cells, or astrocytes, and its bioactivity was highest in high-density lipoprotein preparations.
View Article and Find Full Text PDFAmyloid-beta (Abeta) peptides, widely presumed to cause Alzheimer's disease, increased mouse neuronal expression of collagen VI through a mechanism involving transforming growth factor signaling. Reduction of collagen VI augmented Abeta neurotoxicity, whereas treatment of neurons with soluble collagen VI blocked the association of Abeta oligomers with neurons, enhanced Abeta aggregation and prevented neurotoxicity. These results identify collagen VI as an important component of the neuronal injury response and demonstrate its neuroprotective potential.
View Article and Find Full Text PDFPrion diseases are caused by conversion of a normally folded, non-pathogenic isoform of the prion protein (PrP(C)) to a misfolded, pathogenic isoform (PrP(Sc)). Prion inoculation experiments in mice expressing homologous PrP(C) molecules on different genetic backgrounds displayed different incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed.
View Article and Find Full Text PDFCurr Alzheimer Res
December 2006
Neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) afflict growing numbers of people but treatments are not available or ineffective. These diseases are characterized by the loss of specific neuronal populations, the accumulation of protein aggregates inside and sometimes outside neurons, and an activation of immune pathways in the brain. The causes of sporadic forms of AD or PD are not known but it has been postulated that reduced trophic support to neurons together with age dependent increases in cellular stress lead to chronic injury and ultimately the demise of neurons.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by progressive neurodegeneration and cerebral accumulation of the beta-amyloid peptide (Abeta), but it is unknown what makes neurons susceptible to degeneration. We report that the TGF-beta type II receptor (TbetaRII) is mainly expressed by neurons, and that TbetaRII levels are reduced in human AD brain and correlate with pathological hallmarks of the disease. Reducing neuronal TGF-beta signaling in mice resulted in age-dependent neurodegeneration and promoted Abeta accumulation and dendritic loss in a mouse model of AD.
View Article and Find Full Text PDFBackground: Transforming Growth Factor-beta (TGF-beta) regulates key biological processes during development and in adult tissues and has been implicated in many diseases. To study the biological functions of TGF-beta, sensitive, specific, and convenient bioassays are necessary. Here we describe a new cell-based bioassay that fulfills these requirements.
View Article and Find Full Text PDFCurr Alzheimer Res
April 2005
Neurodegenerative and dementing illnesses are becoming an increasing social and economical burden as the number of older people continues to grow in industrialized countries. Current knowledge of the processes leading to these diseases is still limited, and very few effective treatments are available. Because neurodegeneration is associated with an activation of injury and innate immune responses in the brain, drugs that could mimic the beneficial aspects of this response are potential therapeutic candidates.
View Article and Find Full Text PDF