Publications by authors named "Tessa Pronk"

Bioanalytical tools can be used for assessment of the chemical quality of drinking water and its sources. For water managers it is important to know the probability that a bioassay response above an established health-based 'effect-based trigger value' (EBT) indeed implies a harmful chemical (mixture) concentration. This study presents and applies a framework, based on Bayes' theorem, to derive such risk probabilities for bioassay responses.

View Article and Find Full Text PDF

Bioassays are increasingly being implemented for water quality monitoring as targeted chemical analyses are not always sufficient for the detection of all emerging chemicals or transformation products. However, the interpretation of bioassay results remains challenging, in particular because a positive response does not necessarily indicate that there may be an increased risk. For this purpose, effect-based trigger (EBT) values have been introduced as thresholds above which action needs to be undertaken to determine the cause of the response.

View Article and Find Full Text PDF

Biological treatment processes have the potential to remove organic micropollutants (OMPs) during water treatment. The OMP removal capacity of conventional drinking water treatment processes such as rapid sand filters (RSFs), however, has not been studied in detail. We investigated OMP removal and transformation product (TP) formation in seven full-scale RSFs all treating surface water, using high-resolution mass spectrometry based quantitative suspect and non-target screening (NTS).

View Article and Find Full Text PDF

Background: The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR.

View Article and Find Full Text PDF

While reusing research data has evident benefits for the scientific community as a whole, decisions to archive and share these data are primarily made by individual researchers. In this paper we analyse, within a game theoretical framework, how sharing and reuse of research data affect individuals who share or do not share their datasets. We construct a model in which there is a cost associated with sharing datasets whereas reusing such sets implies a benefit.

View Article and Find Full Text PDF

For cells, reacting aptly to changes in their environment is of critical importance. The protein Heme oxygenase-1 (HMOX1) plays a critical role as a guard of cellular homeostasis and is considered as a reliable indicator of cellular oxidative stress. A better insight in the regulation of HMOX1 would assist in understanding the physiological role of HMOX1 as well as improving functional interpretation of the gene as a biomarker in toxicogenomics.

View Article and Find Full Text PDF

The zebrafish embryo (ZFE) is a promising non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatotoxic responses. Here, we hypothesize that the detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of new compounds and to the reduction of rodents used for screening. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of cholestasis, steatosis and necrosis, and two non-hepatotoxic controls.

View Article and Find Full Text PDF

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.

View Article and Find Full Text PDF

In vitro models for hepatotoxicity testing are a necessity for advancement of toxicological research. Assessing the in vitro response requires in vivo validated gene sets reflective of the hepatotoxic phenotype. Cholestasis, the impairment of bile flow, is induced in C57BL/6J mice treated with cyclosporine A (CsA) to identify phenotype reflective gene sets.

View Article and Find Full Text PDF

The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased.

View Article and Find Full Text PDF

The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the applicability of whole ZFE for hepatotoxicity testing by combining histopathology and next-generation sequencing-based gene expression profiling.

View Article and Find Full Text PDF

There is a need to replace animal tests for the identification of skin sensitizers and currently many alternative assays are being developed that have very promising results. In this study a gene signature capable of very accurate identification of sensitizers was established in the HaCaT human keratinocyte cell line. This signature was evaluated in a separate study using six chemicals that are either local lymph node (LLNA) false-positive or false-negative chemicals in addition to nine sensitizers and four non-sensitizers.

View Article and Find Full Text PDF

The use of genes for distinguishing classes of toxicity has become well established. In this paper we combine the reconstruction of a gene dysregulation network (GDN) with a classifier to assign unseen compounds to their appropriate class. Gene pairs in the GDN are dysregulated in the sense that they are linked by a common expression pattern in one class and differ in this pattern in another class.

View Article and Find Full Text PDF

The zebrafish embryo is considered to provide a promising alternative test model for developmental toxicity testing. Most systems use morphological assessment of the embryos, however, microarray analyses may increase sensitivity and predictability of the test by detecting more subtle and detailed responses. In this study, we investigated the possibility of relating gene expression profiles of structurally similar chemicals tested in a single concentration, to a complete transcriptomic concentration-response of flusilazole (FLU).

View Article and Find Full Text PDF

The zebrafish embryotoxicity test (ZET) is considered a promising alternative model in predictive toxicology. Currently, morphological assessment of the embryo is the main readout for this assay. However, implementation of transcriptomics may help to detect more subtle effects, which may increase the sensitivity and predictability of the test.

View Article and Find Full Text PDF

The whole embryo culture (WEC) model serves as a potential alternative for classical in vivo developmental toxicity testing. In the WEC, cultured rat embryos are exposed during neurulation and early organogenesis and evaluated for morphological effects. Toxicogenomic-based approaches may improve the predictive ability of WEC by providing molecular-based markers associated with chemical exposure, which can be compared across multiple parameters (e.

View Article and Find Full Text PDF

The zebrafish embryotoxicity test (ZET) is an alternative test to predict embryotoxicity of substances based on morphological assessment. Implementing transcriptomics may increase sensitivity and objectivity of the test system. We applied the category approach to compare effects of compounds from two chemical classes, the glycol ethers and 1,2,4-triazoles, on the embryo.

View Article and Find Full Text PDF

Pooling of RNA samples is generally applied to obtain samples that represent the average signal of biological replicates of a single treatment. For toxicogenomics, pooling RNA of samples treated by different compounds could in the same way summarize these compounds to a single sample with average signals per class. In this study, we investigated the efficiency of such an approach to establish class specific differences in gene expression.

View Article and Find Full Text PDF

The embryonic stem cell test (EST) is an in vitro method for predicting developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation. We previously described how gene expression analysis in the EST can be used to describe normal ESC differentiation as well as identify compound developmental toxicity, by means of our differentiation track algorithm. In this study, we combined raw data from our three previous studies in a new integrated analysis, to identify a gene set that allows for improved prediction.

View Article and Find Full Text PDF

A combined analysis of data from a series of literature studies can lead to more reliable results than that based on a single study. A common problem in performing combined analyses of literature microarray gene expression data is that the original raw data are not always available and not always easy to combine in one analysis. We propose an approach that does not require analyzing original raw data, but instead takes literature gene sets derived from (supplementary) tables as input and uses gene co-occurrence in these sets for mapping a co-regulation network.

View Article and Find Full Text PDF

Many chemicals can induce allergic contact dermatitis. Because evaluation of skin sensitizing potential by animal testing is prohibited for cosmetics, and screening of many chemicals is required within Registration, Evaluation, Authorisation and Restriction of Chemicals, urgent need exists for predictive in vitro assays to identify contact allergens. Keratinocytes (KC) are the first cells encountered when chemicals land on the skin.

View Article and Find Full Text PDF

In bacteria, gene regulation is one of the fundamental characteristics of survival, colonization and pathogenesis. Operons play a key role in regulating expression of diverse genes involved in metabolism and virulence. However, operon structures in pathogenic bacteria have been determined only by in silico approaches that are dependent on factors such as intergenic distances and terminator/promoter sequences.

View Article and Find Full Text PDF

In this paper, we discuss the potential for the use of engineering methods that were originally developed for the design of embedded computer systems, to analyse biological cell systems. For embedded systems as well as for biological cell systems, design is a feature that defines their identity. The assembly of different components in designs of both systems can vary widely.

View Article and Find Full Text PDF