The chemical and isotopic composition of stony coral skeletons form an important archive of past climate. However, these reconstructions are largely based on empirical relationships often complicated by "vital effects" arising from uncertain physiological processes of the coral holobiont. The skeletons of deep-sea corals, such as Desmophyllum dianthus, are characterised by micron-scale or larger geochemical heterogeneity associated with: (1) centres of calcification (COCs) where nucleation of new skeleton begins, and (2) fibres that thicken the skeleton.
View Article and Find Full Text PDFCoral reefs provide ecosystem benefits to millions of people but are threatened by rapid environmental change and ever-increasing human pressures. Restoration is becoming a priority strategy for coral reef conservation, yet implementation remains challenging and it is becoming increasingly apparent that indirect conservation and restoration approaches will not ensure the long-term sustainability of coral reefs. The important role of environmental conditions in restoration practice are currently undervalued, carrying substantial implications for restoration success.
View Article and Find Full Text PDFCoastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution.
View Article and Find Full Text PDFBackground: Crustose coralline algae (CCA) are calcifying red macroalgae that play important ecological roles including stabilisation of reef frameworks and provision of settlement cues for a range of marine invertebrates. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found magnitude of effect to be species-specific. Response to OW and OA could be linked to divergent underlying molecular processes across species.
View Article and Find Full Text PDFCrustose coralline algae (CCA) are vital to coral reefs worldwide, providing structural integrity and inducing the settlement of important invertebrate larvae. CCA are known to be impacted by changes in their environment, both during early development and adulthood. However, long-term studies on either life history stage are lacking in the literature, therefore not allowing time to explore the acclimatory or potential adaptive responses of CCA to future global change scenarios.
View Article and Find Full Text PDFCrustose coralline algae (CCA) are calcifying red macroalgae that reef build in their own right and perform essential ecosystem functions on coral reefs worldwide. Despite their importance, limited genetic information exists for this algal group. De novo transcriptomes were compiled for four species of common tropical CCA using RNA-seq.
View Article and Find Full Text PDFThis work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids.
View Article and Find Full Text PDF