Nat Rev Urol
January 2025
Multiple conditions can cause hypoxia in the testis, including exposure to high altitude, sleep apnoea, testicular torsion and varicocele. Varicocele accounts for up to 44% of instances of primary infertility, but the cumulative contribution of hypoxic conditions to male infertility is undefined. Results of controlled hypobaric hypoxia studies have demonstrated a substantial detrimental effect of short-term and long-term exposures on sperm; however, downstream effects on embryo development and offspring health are less well understood.
View Article and Find Full Text PDFMol Reprod Dev
October 2024
The actions of spermatogenic stem cells (SSCs) provide the foundation for continual spermatogenesis and regeneration of the cognate lineage following cytotoxic insult or transplantation. Several decades of research with rodent models have yielded knowledge about the core biology, morphological features, and molecular profiles of mammalian SSCs. Translation of these discoveries to utilities for human fertility preservation, improving animal agriculture, and wildlife conservation are actively being pursued.
View Article and Find Full Text PDFSpermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches.
View Article and Find Full Text PDFOxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls.
View Article and Find Full Text PDFBackground: The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved.
View Article and Find Full Text PDFResiding between the testes and the vas deferens, the epididymis is a highly convoluted tubule whose unique luminal microenvironment is crucial for the functional maturation of spermatozoa. This microenvironment is created by the combined secretory and resorptive activity of the lining epididymal epithelium, including the release of extracellular vesicles (epididymosomes), which encapsulate fertility modulating proteins and a myriad of small non-coding RNAs (sncRNAs) that are destined for delivery to recipient sperm cells. To enable investigation of this intercellular communication nexus, we have previously developed an immortalized mouse caput epididymal epithelial cell line (mECap18).
View Article and Find Full Text PDFMethods Mol Biol
June 2023
Maintenance and self-renewal of the spermatogonial stem cell (SSC) population in the testis are dictated by the expression of a unique suite of genes. In manipulating gene expression through loss-of-function approaches, we can identify important regulatory mechanisms that dictate spermatogonial fate decisions. One such approach is RNA interference (RNAi), which uses natural cellular responses to small interfering RNAs to decrease levels of a targeted transcript.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2023
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status.
View Article and Find Full Text PDFIn Brief: Post-ovulatory ageing of oocytes leads to poor oocyte and embryo quality as well as abnormalities in offspring. This review provides an update on the contributions of oxidative stress to this process and discusses the current literature surrounding the use of antioxidant media to delay post-ovulatory oocyte ageing.
Abstract: Following ovulation, the metaphase II stage oocyte has a limited functional lifespan before succumbing to a process known as post-ovulatory oocyte ageing.
Spermatogonial stem cell (SSC) function is essential for male fertility, and these cells hold potential therapeutic value spanning from human infertility treatments to wildlife conservation. As culture is likely to be an integral component of many therapeutic pipelines, we have elected to explore changes in gene expression occurring in undifferentiated spermatogonia in culture that may be intertwined with the temporal reduction in regenerative capacity that they experience. Single cell RNA-sequencing analysis was conducted, comparing undifferentiated spermatogonia retrieved from the adult mouse testis with those that had been subjected to 10 weeks of culture.
View Article and Find Full Text PDFSpermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions.
View Article and Find Full Text PDFBackground: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide.
View Article and Find Full Text PDFSeminal vesicles are an integral part of the male reproductive accessory gland system. They produce a complex array of secretions containing bioactive constituents that support gamete function and promote reproductive success, with emerging evidence suggesting these secretions are influenced by our environment. Despite their significance, the biology of seminal vesicles remains poorly defined.
View Article and Find Full Text PDFMaintenance and self-renewal of the spermatogonial stem cell (SSC) population is the cornerstone of male fertility. Here, we have identified a key role for the nucleosome remodeling protein CHD4 in regulating SSC function. Gene expression analyses revealed that CHD4 expression is highly enriched in the SSC population in the mouse testis.
View Article and Find Full Text PDFInformation on the morphology and histology of the male reproductive system of the Crocodylia species is necessary to determine the role of these tissues in the production of functional spermatozoa. Accordingly, in this study we examined the gross morphology and microanatomy of the testis and the male excurrent duct system through which spermatozoa pass before ejaculation. The data demonstrate that the reproductive system in male saltwater crocodiles comprises paired testes, which convey spermatozoa distally via the rete testis into an excurrent duct system comprising ductuli efferentes, ductuli epididymides, ductus epididymidis and ductus deferens.
View Article and Find Full Text PDFStress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP.
View Article and Find Full Text PDFThe 2019 meeting of the Society for Reproductive Biology (SRB) provided a platform for the dissemination of new knowledge and innovations to improve reproductive health in humans, enhance animal breeding efficiency and understand the effect of the environment on reproductive processes. The effects of environment and lifestyle on fertility and animal behaviour are emerging as the most important modern issues facing reproductive health. Here, we summarise key highlights from recent work on endocrine-disrupting chemicals and diet- and lifestyle-induced metabolic changes and how these factors affect reproduction.
View Article and Find Full Text PDFMale fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether equivalent changes in metabolism occur remains unexplored. In this review, we mined recently published scRNA-seq databases from mouse and human testes to compare expression profiles of spermatogonial subsets, focusing on metabolism.
View Article and Find Full Text PDFOxidative stress is a leading causative agent in the defective sperm function associated with male infertility. Such stress commonly manifests via the accumulation of pathological levels of the electrophilic aldehyde, 4-hydroxynonenal (4HNE), generated as a result of lipid peroxidation. This highly reactive lipid aldehyde elicits a spectrum of cytotoxic lesions owing to its propensity to form stable adducts with biomolecules.
View Article and Find Full Text PDFEnsuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.
View Article and Find Full Text PDFDiabetes is associated with poor oocyte quality and the dysregulation of ovarian function and is thus a leading contributor to the increasing prevalence of female reproductive pathologies. Accordingly, it is well-established that insulin fulfills a key role in the regulation of several facets of female reproduction. What remains less certain is whether proinsulin C-peptide, which has recently been implicated in cellular signaling cascades, holds a functional role in the female germline.
View Article and Find Full Text PDFThe unique biology of the oocyte means that accepted paradigms for DNA repair and protection are not of direct relevance to the female gamete. Instead, preservation of the integrity of the maternal genome depends on endogenous protein stores and/or mRNA transcripts accumulated during oogenesis. The aim of this study was to determine whether mature (MII) oocytes have the capacity to detect DNA damage and subsequently mount effective repair.
View Article and Find Full Text PDFHistorically, research in spermatogonial biology has been hindered by a lack of validated approaches to identify and isolate pure populations of the various spermatogonial subsets for in-depth analysis. In particular, although a number of markers of the undifferentiated spermatogonial population have now been characterized, standardized methodology for assessing their specificity to the spermatogonial stem cell (SSC) and transit amplifying progenitor pools has been lacking. To date, SSC content within an undefined population of spermatogonia has been inferred using either lineage tracing or spermatogonial transplantation analyses which generate qualitative and quantitative data, respectively.
View Article and Find Full Text PDF