We examined the effect of high-fat (HF) feeding on blood pressure (BP) regulation, including hypothalamic redox signaling, as well as the changes in diurnal patterns and responses to restraint stress. Furthermore, we investigated whether HF feeding affects catecholamine and neuropeptide Y (NPY) biosynthesis in the adrenal medulla. Male obesity-prone Sprague-Dawley rats were fed with standard rat chow or 60% HF diet for 6 months.
View Article and Find Full Text PDFIntraventricular administration of glial cell line-derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight.
View Article and Find Full Text PDFWe examined if life-long mild caloric restriction (CR) alone or with voluntary exercise prevents the age-related changes in catecholamine biosynthetic enzyme levels in the adrenal medulla and hypothalamus. Ten-week-old Fisher-344 rats were assigned to: sedentary; sedentary+8% CR; or 8% CR+wheel running. Rats were euthanized at 6 or 24 months of age.
View Article and Find Full Text PDF