Publications by authors named "Tess Oram"

Article Synopsis
  • Research indicates that both VPM and POm equally code for whisker and head movements when mice are freely moving, even with eyebrows trimmed, suggesting that head kinematics are not solely dependent on whisker input.
  • Optogenetic experiments show that activating thalamic neurons can change head movements, highlighting how these brain regions integrate sensory information to affect head positioning during tactile perception.
View Article and Find Full Text PDF

The representation of contextual information peripheral to a salient stimulus is central to an animal's ability to correctly interpret and flexibly respond to that stimulus. While the computations and circuits underlying the context-dependent modulation of stimulus-response pairings have typically been studied in vertebrates, the genetic tractability, numeric simplification, and well-characterized connectivity patterns of the Drosophila melanogaster brain have facilitated circuit-level insights into contextual processing. Recent studies in flies reveal the neuronal mechanisms that create flexible context-dependent behavioral responses to sensory events in conditions of predation threat, feeding regulation, and social interaction.

View Article and Find Full Text PDF

Subdivisions of mouse whisker somatosensory thalamus project to cortex in a region-specific and layer-specific manner. However, a clear anatomical dissection of these pathways and their functional properties during whisker sensation is lacking. Here, we use anterograde trans-synaptic viral vectors to identify three specific thalamic subpopulations based on their connectivity with brainstem.

View Article and Find Full Text PDF

Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom).

View Article and Find Full Text PDF

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices.

View Article and Find Full Text PDF

Mouse primary somatosensory barrel cortex (wS1) processes whisker sensory information, receiving input from two distinct thalamic nuclei. The first-order ventral posterior medial (VPM) somatosensory thalamic nucleus most densely innervates layer 4 (L4) barrels, whereas the higher-order posterior thalamic nucleus (medial part, POm) most densely innervates L1 and L5A. We optogenetically stimulated VPM or POm axons, and recorded evoked excitatory postsynaptic potentials (EPSPs) in different cell-types across cortical layers in wS1.

View Article and Find Full Text PDF

Rats' large whiskers (macrovibrissae) are used to explore their nearby environment, typically using repetitive protraction-retraction "whisking" motions that are coordinated with head and body movements [1-8]. Once objects are detected, the rat can further explore the object tactually by using both the macrovibrissae and an array of shorter, stationary microvibrissae on the chin, as well as by using the lips [9-11]. When touch occurs during whisking, a fast reflexive response, termed a touch-induced pump (TIP), may be triggered.

View Article and Find Full Text PDF

Rats repeatedly sweep their facial whiskers back and forth in order to explore their environment. Such explorative whisking appears to be driven by central pattern generators (CPGs) that operate independently of direct sensory feedback. Nevertheless, whisking can be modulated by sensory feedback, and it has been hypothesized that some of this modulation already occurs within the brainstem.

View Article and Find Full Text PDF

What are the functions implemented by neurons in the sensory nuclei of the thalamus? It seems that this question has accompanied cortical and thalamic studies since their onset some 6 decades ago. Over the years, the simplistic, traditional view of thalamic neurons as mere relays of sensory information has given way to more sophisticated views, of which several alternative hypotheses have been proposed. This commentary briefly reviews the 2 current major hypotheses and shows how a new, pioneering experiment, published in Cerebral Cortex by Groh, Acsady and colleagues, discriminates between them.

View Article and Find Full Text PDF