Acta Crystallogr C Struct Chem
March 2016
The application of transition metal chelates as chemotherapeutic agents has the advantage that they can be used as a scaffold around which ligands with DNA recognition elements can be anchored. The facile substitution of these components allows for the DNA recognition and binding properties of the metal chelates to be tuned. Copper is a particularly interesting choice for the development of novel metallodrugs as it is an endogenous metal and is therefore less toxic than other transition metals.
View Article and Find Full Text PDFA series of Group 7 Fischer carbene complexes, [Cp(CO)2 Mn(I) =C(OEt)Ar] (Cp=cyclopentadienyl, Ar=Th=thienyl (1 a), Ar=Fu=furyl (2 a), Ar=Fc=ferrocenyl (3 a)) and biscarbene complexes, [Cp(CO)2 MnC(OEt)Ar'(OEt)CMn(CO)2 Cp] (Ar'=Th'=2,5-thienylene (1 b), Ar'=Fu'=2,5-furylene (2 b), Ar'=Fc'=1,1'-ferrocendiyl (3 b)) was synthesized and characterized. Chemical oxidation of [Cp(CO)2 MnC(OEt)Fc] (3 a) and isolation of the oxidised species [3 a][PF6 ] possessing a Mn(II) centre proved possible below -30 °C in dichloromethane solution. The ESR spectrum of the transiently stable radical cation, [3 a][PF6 ], confirmed the presence of a low-spin Mn(II) centre characterized by a rhombic g tensor (gx =1.
View Article and Find Full Text PDF