Publications by authors named "Teruyoshi Nobukawa"

Incoherent digital holography (IDH) with a sequential phase-shifting method enables high-definition 3D imaging under incoherent lights. However, sequential recording of multiple holograms renders IDH impractical for 3D videography. In this study, we propose grating-based in-line geometric-phase-shifting IDH.

View Article and Find Full Text PDF

Incoherent digital holography (IDH) enables the recording of holograms with incoherent light. However, there is unnatural bokeh with ringing on reconstructed 2D images, owing to the diffraction calculation based on the coherent nature of the light. Thus, we propose a transformation method that converts it into incoherent bokeh.

View Article and Find Full Text PDF

Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.

View Article and Find Full Text PDF

Incoherent digital holography (IDH) requires no spatial coherence; however, it requires high temporal coherence for a light source to capture holograms with high spatial resolution. Temporal coherence is often enhanced with a bandpass filter, reducing the light utilization efficiency. Thus, there is a trade-off between spatial resolution and light utilization efficiency.

View Article and Find Full Text PDF

Incoherent digital holography (IDH) enables passive 3D imaging through the self-interference of incoherent light. IDH imaging properties are dictated by the numerical aperture and optical layout in a complex manner [Opt. Express27, 33634 (2019)OPEXFF1094-408710.

View Article and Find Full Text PDF

An unconventional angular-multiplexed recording technique is proposed for holographic data storage based on a computer-generated hologram (CGH) technique. While general angular-multiplexed recording techniques require a Mach-Zehnder interferometer to record data pages as volume holograms, the proposed method records ones with a common-path configuration with the help of a CGH technique, which prevents the optical setup from being bulky. In the proposed method, the CGH reconstructs signal and reference beams simultaneously, and these beams interfere in a recording medium.

View Article and Find Full Text PDF

Incoherent digital holography (IDH) enables passive 3D imaging under spatially incoherent light; however, the reconstructed images are seriously affected by detector noise. Herein, we derive theoretical sampling requirements for IDH to reduce this noise via simple postprocessing based on spatial averaging. The derived theory provides a significant insight that the sampling requirements vary depending on the recording geometry.

View Article and Find Full Text PDF

Although three-dimensional (3D) imaging and extended depth-of-field (DOF) imaging are completely opposite techniques, both provide much more information about 3D scenes and objects than does traditional two-dimensional imaging. Therefore, these imaging techniques strongly influence a wide variety of applications, such as broadcasting, entertainment, metrology, security and biology. In the present work, we derive a generalised theory involving incoherent digital holography to describe both 3D imaging and quasi-infinite-DOF (QIDOF) imaging, which allows us to comprehensively discuss the functions of each imaging technique.

View Article and Find Full Text PDF

To increase the recording density of computer-generated-hologram (CGH)-based holographic data storage, a phase data page reconstruction method by the transport of intensity equation (TIE) is proposed. The TIE generally requires a scanning image sensor because the phase retrieval process needs at least two defocused intensity distributions. Although the TIE is applied, the proposed method enables detection of the distributions simultaneously by utilizing an extra conjugate component reconstructed from the CGH.

View Article and Find Full Text PDF

Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings is proposed for acquiring holograms of moving objects. The gratings presented here play the following three roles: dividing the beams, modulating the curvature of spherical beams, and introducing different phase shifts. With the gratings of our proposed method, four individual holograms of a spatially incoherent light are formed on an image sensor.

View Article and Find Full Text PDF

Interpixel cross talk decreases the quality of a reconstructed signal in holographic data storage and imposes a limitation on its storage capacity. To reduce the interpixel cross talk, an orthogonal polarization encoding method is proposed. In the proposed method, the polarization state of each pixel is set to be orthogonal with that of surrounding pixels.

View Article and Find Full Text PDF

Holographic recording media can store the amplitude and the phase, or the complex amplitude, of a beam on the basis of holography. Owing to this characteristic, digital data can be encoded onto the complex amplitude of a signal beam in holographic data storage. However, most of conventional holographic storage systems encode digital data onto the amplitude alone because there are difficulties for modulating and detecting the phase.

View Article and Find Full Text PDF

A holographic data storage system based on a computer-generated hologram (CGH) is simple and compact because a hologram of a data page is recorded through an imaging system without an additional optical path for a reference beam. In this paper, to improve the recording density of the holographic data storage based on a CGH, a shift multiplexing method using a spherical wave is proposed. A data page to be stored and a spherical wave are simultaneously reconstructed from a single CGH.

View Article and Find Full Text PDF

Digital super-resolution holographic data storage based on Hermitian symmetry is proposed to store digital data in a tiny area of a medium. In general, reducing a recording area with an aperture leads to the improvement in the storage capacity of holographic data storage. Conventional holographic data storage systems however have a limitation in reducing a recording area.

View Article and Find Full Text PDF

A coaxial polarization holographic data recording is proposed, and a proof-of-principle experiment is demonstrated for the first time, to the best of our knowledge. A proposed recording system allows us to record and retrieve a volume polarization hologram using a simple optical setup, as compared with conventional polarization holographic data storage systems. By using the proposed system, the data pages encoded on horizontal and vertical linearly polarized beams were simultaneously recorded, and each data page was successfully retrieved without any error.

View Article and Find Full Text PDF

A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor.

View Article and Find Full Text PDF

A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture.

View Article and Find Full Text PDF

A multilayer recording method using a varifocal lens generated with a kinoform is presented. In this recording method, a focus position is axially displaced by adding a defocus phase to a phase modulation pattern, which consists of a random phase mask and a computer-generated reference pattern. Shift selectivity and multiplexed recording are experimentally investigated in coaxial holographic data storage.

View Article and Find Full Text PDF

A computer-generated reference pattern (CGRP) allows improvement in light efficiency and the quality of reconstructed data in coaxial holographic data storage. In this Letter, a multiplexed recording method with uncorrelated CGRPs is proposed. With this method, crosstalk from adjacent holograms is suppressed without shifting a medium.

View Article and Find Full Text PDF

A high-resolution and multilevel designed reference pattern (DRP) is presented for improvement of both light utilization efficiency and the signal-to-noise ratio (SNR) of reconstructed images in coaxial holographic data storage. With a DRP, the desired Fourier power spectrum of a reference beam is obtained. Numerical and experimental results show that the DRP increases the SNR compared with that of a random phase mask (RPM).

View Article and Find Full Text PDF