Entry exclusion is a process whereby plasmid transfer between donor and recipient cells harboring identical or closely related conjugative plasmids is inhibited. Exclusion proteins in the recipient cells are responsible for entry exclusion. Although IncI1 Plasmid R64 and IncIγ plasmid R621a exhibit similar genome structure in replication, transfer, and leading regions, they belong to different incompatibility and exclusion groups.
View Article and Find Full Text PDFThe monocot coleoptile tip region has been generally supposed to be the source of IAA to supply IAA to basal parts by the polar IAA transport system, which results in gravi- and phototropic curvature of coleoptiles. Based on this IAA transport system and gravitropism of maize coleoptiles, we have developed two screening methods to identify small molecules from a large chemical library that inhibit IAA transport. The methods detect molecules that affect (i) gravitropic curvature of coleoptiles; and (ii) the amount of IAA transported from the tip.
View Article and Find Full Text PDFPlant roots play important roles not only in the absorption of water and nutrients, but also in stress tolerance. Previously, we identified RSOsPR10 as a root-specific pathogenesis-related (PR) protein induced by drought and salt treatments in rice. Transcripts and proteins of RSOsPR10 were strongly induced by jasmonate (JA) and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while salicylic acid (SA) almost completely suppressed these inductions.
View Article and Find Full Text PDFWe present the complete genome sequence of the tetracycline resistance plasmid R621a isolated from Salmonella typhimurium, which belongs to the incompatibility group Iγ. In the 93,185bp circular double-stranded R621a genome, 96 complete ORFs are predicted. In addition, one and six different kinds of proteins are produced by translational reinitiation and shufflon multiple inversions, respectively.
View Article and Find Full Text PDFA streptomycin and tetracycline resistance plasmid R64 isolated from Salmonella enterica serovar Typhimurium belongs to the incompatibility group I1 (IncI1). The DNA sequence of the R64 conjugative transfer region was described previously (Komano et al., 2000).
View Article and Find Full Text PDFConjugation is a fundamental process for the rapid evolution of bacteria, enabling them, for example, to adapt to various environmental conditions or to acquire multi-drug resistance. NikA is one of the relaxosomal proteins that initiate the intercellular transfer of the R64 conjugative plasmid with the P-type origin of transfer, oriT. The three-dimensional structure of the N-terminal 51 residue fragment of NikA, NikA(1-51), which binds to the 17-bp repeat A sequence in R64 oriT, was determined by NMR to be a homodimer composed of two identical ribbon-helix-helix (RHH) domains, which are commonly found in transcriptional repressors.
View Article and Find Full Text PDFThe type IV pili of plasmid R64 belonging to the type IVB group are required only for liquid mating. They consist of the major and minor components PilS pilin and PilV adhesin, respectively. PilS pilin is first synthesized as a 22-kDa prepilin from the pilS gene and is then processed to a 19-kDa mature pilin by PilU prepilin peptidase.
View Article and Find Full Text PDFThe shufflon of plasmid R64 consists of four DNA segments separated and flanked by seven sfx recombination sites. Rci-mediated recombination between any inverted sfx sequences causes inversion of the DNA segments independently or in groups. The R64 shufflon selects one of seven pilV genes encoding type IV pilus adhesins, in which the N-terminal region is constant, while the C-terminal regions are variable.
View Article and Find Full Text PDFThe OspE2 product of Shigella spp., the expression of which is regulated by the mxiE gene, is secreted through a type III secretion system into host cells. We investigated the function of OspE2 of Shigella sonnei by using cultured epithelial cells.
View Article and Find Full Text PDFConservative site-specific recombination plays key roles in creating biological diversity in prokaryotes. Most site-specific inversion systems consist of two recombination sites and a recombinase gene. In contrast, the shufflon multiple inversion system of plasmid R64 consists of seven sfx recombination sites, which separate four invertible DNA segments, and the rci gene encoding a site-specific recombinase of the integrase family.
View Article and Find Full Text PDFConservative site-specific recombination plays key roles in creating biological diversity in prokaryotes. Most site-specific inversion systems consist of two recombination sites and a recombinase gene. In contrast, the shufflon multiple inversion system of plasmid R64 consists of seven sfx recombination sites, which separate four invertible DNA segments, and the rci gene encoding a site-specific recombinase of the integrase family.
View Article and Find Full Text PDFIncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
July 2004
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, a TnV insertion developmental mutation, Omega773, of M. xanthus was analyzed.
View Article and Find Full Text PDFIncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64.
View Article and Find Full Text PDFThe origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18.
View Article and Find Full Text PDFMyxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, two novel developmental genes, fruC and fruD, of M. xanthus were identified and characterized.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
August 2003
Expression of the fruA gene, encoding a putative transcription factor essential for fruiting body formation of Myxococcus xanthus, is specifically activated during development. In the present study, we have analyzed the mechanism of the transcriptional regulation of fruA expression. From gel retardation and footprinting assays using various fruA regulatory regions as probes and competitors, a protein designated factor X was found to specifically bind to a sequence (xbs) located downstream of the transcription-initiation site (+78 to +94) of the fruA gene.
View Article and Find Full Text PDFDuring lysogenization of myxophage Mx8, phage DNA can be integrated into the attB site of the Myxococcus xanthus chromosome through site-specific recombination. We previously demonstrated that the Mx8 attP site is located within the coding sequence of the Mx8 intP gene. Hence, the integration of Mx8 into the M.
View Article and Find Full Text PDFThe developmentally regulated gene dofA, identified from pulse-labeling experiments by two-dimensional gel electrophoresis, and its homologue, dofB, were cloned and characterized in Myxococcus xanthus. Deletion of dofA and dofB did not affect the vegetative growth and development of M. xanthus.
View Article and Find Full Text PDFSpecific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms.
View Article and Find Full Text PDFTwo genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE.
View Article and Find Full Text PDFWe have previously shown that the pilL, pilN, pilQ, pilS, pilU, and pilV genes of plasmid R64 encode outer membrane lipoprotein, secretin, cytoplasmic ATPase, major pilin, prepilin peptidase, and minor pilin, respectively, which are required for thin-pilus formation. In this work, we characterized the products of the remaining essential genes, pilK, pilM, pilO, pilP, pilR, and pilT, with regard to their localization and processing. Overexpression systems containing pilM, pilO, and pilP genes fused with N-terminal glutathione S-transferase (GST) or a His tag were constructed.
View Article and Find Full Text PDF