Publications by authors named "Teruo Hidaka"

Background: Dipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrotic actions. DPP-4 inhibitors improve albuminuria and renal injury including glomerular damage independent of its hypoglycemic effect.

View Article and Find Full Text PDF

Podocytes are highly specialized cells that line the glomerulus of the kidney and play a role in filtration. Podocyte injury plays a critical role in the development of many kidney diseases, but the underlying mechanisms remain unclear. In this study, we identified that neurofilament heavy polypeptide (NEFH), an intermediate filament component, protects podocyte from injury.

View Article and Find Full Text PDF

Cathepsin L, a lysosomal cysteine proteinase, may have a key role in various biological and disease processes by intracellular and extracellular degradation of proteins. We examined the levels of cathepsin L and its intrinsic inhibitors in glomeruli of rats with puromycin aminonucleoside (PAN) nephrosis. In contrast to the weak levels of cathepsin L in normal glomeruli, on days 4 and 8, strong immunostaining was detected in almost all podocytes when proteinuria and pathological changes of the podocytes developed.

View Article and Find Full Text PDF

A 42-year-old Japanese man with hereditary angioedema suffered accidental trauma to his jaw in Shizuoka Prefecture, Japan, which gradually caused facial edema. Since plasma-derived human C1 inhibitor (pdh C1-INH) was unavailable, he had to be transferred to Juntendo University Hospital in Tokyo. Due to his severe edema, he suffered asphyxiation leading to cardiopulmonary arrest upon arrival.

View Article and Find Full Text PDF
Article Synopsis
  • Rac1 is a protein that plays a significant role in various biological processes and its expression increases during podocyte injury, although its exact function in repair is uncertain.
  • Experiments with podocyte-specific Rac1 knockout mice showed increased detachment of podocytes and stronger adhesion of the glomerular basement membrane to Bowman's capsule compared to control mice, indicating that Rac1 is crucial for podocyte integrity during damage.
  • The findings suggest that Rac1 activates the mTOR pathway in podocytes, and its absence leads to reduced cell volume and stronger suppression of mTOR activity, which may contribute to the progression of kidney damage and glomerulosclerosis.
View Article and Find Full Text PDF

The highly conserved spalt (sal) gene family members encode proteins characterized by multiple double zinc finger motifs of the C2H2 type. Humans and mice each have four known Sal-like genes (SALL1-4 in humans and Sall1-4 in mice). Sall1 is known to have a crucial role in kidney development.

View Article and Find Full Text PDF

The irreversibility of glomerulosclerotic changes depends on the degree of podocyte injury. We have previously demonstrated the endocytic translocation of podocin to the subcellular area in severely injured podocytes and found that this process is the primary disease trigger. Here we identified the protein sorting nexin 9 (SNX9) as a novel facilitator of podocin endocytosis in a yeast two-hybrid analysis.

View Article and Find Full Text PDF

Studies have revealed many analogies between podocytes and neurons, and these analogies may be key to elucidating the pathogenesis of podocyte injury. Cathepsin D (CD) is a representative aspartic proteinase in lysosomes. Central nervous system neurons in CD-deficient mice exhibit a form of lysosomal storage disease with a phenotype resembling neuronal ceroid lipofuscinoses.

View Article and Find Full Text PDF

Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice.

View Article and Find Full Text PDF

Podocytes serve as the final barrier to urinary protein loss through a highly specialized structure called a slit membrane and maintain foot process and glomerular basement membranes. Podocyte injury results in progressive glomerular damage and accelerates sclerotic changes, although the exact mechanism of podocyte injury is still obscure. We focus on the staining gap (podocin gap) defined as the staining difference between podocin and synaptopodin, which are normally located in the foot process.

View Article and Find Full Text PDF

Previous studies have revealed that podocytes normally can be associated with a very high degree of autophagic activity, and that a lack of autophagic activity in podocytes is associated with susceptibility to disease and to late-onset glomerulosclerosis. In the present study, we conducted unilateral nephrectomy as a surgical model for acute nephron reduction. First, using GFP-LC3 transgenic mice to monitor autophagy, we found that glomerular autophagy could be transiently suppressed by surgery, but that it was restored quickly.

View Article and Find Full Text PDF

Activation of Notch1 and Notch2 has been recently implicated in human glomerular diseases. Here we show that Notch2 prevents podocyte loss and nephrosis. Administration of a Notch2 agonistic monoclonal antibody ameliorates proteinuria and glomerulosclerosis in a mouse model of nephrosis and focal segmental glomerulosclerosis.

View Article and Find Full Text PDF

Background: It has been reported that podocytopenia has been occurring with increasing disease severity in patients with IgA nephropathy (IgAN). Dendrin is localized at the slit diaphragm (SD) in podocytes. We showed that dendrin translocates to the nucleus of injured podocytes in experimental nephritis and the nuclear dendrin promotes podocyte apoptosis.

View Article and Find Full Text PDF

Background: Adriamycin (ADR) nephrosis in mice has been extensively studied and has enabled a greater understanding of the processes underlying the progression of renal injury. Dendrin is a novel component of the slit diaphragm with proapoptotic signaling properties, and it accumulates in the podocyte nucleus in response to glomerular injury in mice. The present study re-evaluated chronic progressive nephropathy in ADR mice and the localization of dendrin in mice and in human glomerulopathy.

View Article and Find Full Text PDF

The small GTPase RhoA is activated by the angiotensin II (AngII) type 1 receptor (AT1R), which is part of the local renin-angiotensin system that is involved in podocyte injury preceding glomerular crescent formation. We demonstrated previously that inhibition of AT1R protects against crescentic glomerular injury in Fc receptor-deficient mice (gamma -/-) with anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN). Here, we hypothesized that the RhoA kinase inhibitor, fasudil, attenuates AT1R-dependent crescentic GN.

View Article and Find Full Text PDF