Publications by authors named "Terumasa Toraya"

Nuclear receptors (NRs) have recently received much attention for their newly discovered roles in T cell development, as exemplified by RARα (Treg cells) and RORγt (Th17 cells). In previous studies, we characterized a new type of T cell subset, designated as Tchreg (cytotoxic, helper, and regulatory T) cells, in terms of its cytokine signature. In this study, we investigated the expression and functional relevance of NRs in Tchreg cells by performing mRNA profiling of HOZOT, a cord blood-derived Tchreg cell line.

View Article and Find Full Text PDF

A number of T cell subsets have been identified, and the in vitro characterization of these subsets largely depends on an appropriate induction system for each one. In previous studies, we characterized a unique T cell line, HOZOT, which possessed a CD4+CD8+ double positive (DP) phenotype and multifunctional properties including cytotoxic, helper, and regulatory functions. Therefore, this T cell subset has been termed Tchreg cells.

View Article and Find Full Text PDF

Distinct cytokine production profiles define the effector functions of both helper and regulatory T cells. Recently, we established novel cytotoxic regulatory T (Treg) cell lines, HOZOT, which have been characterized as IL-10-producing T cells. In this study, we further characterized HOZOT by performing comprehensive analyses of cytokines produced by HOZOTs in order to identify a signature cytokine profile.

View Article and Find Full Text PDF

STAT5 molecules are key components of the IL-2 signaling pathway, the deficiency of which often results in autoimmune pathology due to a reduced number of CD4(+)CD25(+) naturally occurring regulatory T (Treg) cells. One of the consequences of the IL-2-STAT5 signaling axis is up-regulation of FOXP3, a master control gene for naturally occurring Treg cells. However, the roles of STAT5 in other Treg subsets have not yet been elucidated.

View Article and Find Full Text PDF

Oral tolerance is an important physiological component of the immune system whereby the organism avoids dangerous reactions such as hypersensitivity to ingested food proteins and other luminal Ags which may cause tissue damage and inflammation. In addition, it has been shown in animal models and in humans that oral tolerance can be applied to controlling undesired immune responses, including autoimmune diseases, allergies, and organ transplant rejections. However, the molecular mechanisms of oral tolerance have been poorly defined.

View Article and Find Full Text PDF