Publications by authors named "Terumasa Tokunaga"

Measuring neuronal activity is important for understanding neuronal function. Ca imaging by genetically encoded calcium indicators (GECIs) is a powerful way to measure neuronal activity. Although it revealed important aspects of neuronal function, measuring the neuronal membrane voltage is important to understand neuronal function as it triggers neuronal activation.

View Article and Find Full Text PDF

Forgetting is important for animals to manage acquired memories to enable adaptation to changing environments; however, the neural network in mechanisms of forgetting is not fully understood. To understand the mechanisms underlying forgetting, we examined olfactory adaptation, a form of associative learning, in The forgetting of diacetyl olfactory adaptation in is regulated by secreted signals from AWC sensory neurons via the TIR-1/JNK-1 pathway. These signals cause a decline of the sensory memory trace in AWA neurons, where diacetyl is mainly sensed.

View Article and Find Full Text PDF

Vascular endothelial cells (ECs) in angiogenesis exhibit inhomogeneous collective migration called "cell mixing", in which cells change their relative positions by overtaking each other. However, how such complex EC dynamics lead to the formation of highly ordered branching structures remains largely unknown. To uncover hidden laws of integration driving angiogenic morphogenesis, we analyzed EC behaviors in an in vitro angiogenic sprouting assay using mouse aortic explants in combination with mathematical modeling.

View Article and Find Full Text PDF

Tracking many cells in time-lapse 3D image sequences is an important challenging task of bioimage informatics. Motivated by a study of brain-wide 4D imaging of neural activity in C. elegans, we present a new method of multi-cell tracking.

View Article and Find Full Text PDF

To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space.

View Article and Find Full Text PDF

Motivation: Automated fluorescence microscopes produce massive amounts of images observing cells, often in four dimensions of space and time. This study addresses two tasks of time-lapse imaging analyses; detection and tracking of the many imaged cells, and it is especially intended for 4D live-cell imaging of neuronal nuclei of Caenorhabditis elegans. The cells of interest appear as slightly deformed ellipsoidal forms.

View Article and Find Full Text PDF

Non-stationary effects are ubiquitous in real world data. In many settings, the observed signals are a mixture of underlying stationary and non-stationary sources that cannot be measured directly. For example, in EEG analysis, electrodes on the scalp record the activity from several sources located inside the brain, which one could only measure invasively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8vhncqii24j7c36c88s47ohchcv00hc1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once