Publications by authors named "Teruko Takeo"

Aim: Hydrogen peroxide (H2O2) is produced during liver transplantation. Ischemia/reperfusion induces oxidation and causes intracellular Ca2+ overload, which harms liver cells. Our goal was to determine the precise mechanisms of these processes.

View Article and Find Full Text PDF

It has been reported that resveratrol (trans-3,5,4'-trihydroxystilbene) from Vitis plants has various cardioprotective effects. Vitis plants also include various resveratrol tetramers. The aim of our study is to clarify the pharmacological properties of resveratrol tetramers.

View Article and Find Full Text PDF

Progressive decline of islet beta cell mass is a hallmark of type 2 diabetes, where nutritional insults are invoked in the pathologic process. Its detailed mechanisms are, however, incompletely understood. We explored the effect of sucrose diet on mitochondria in Goto Kakizaki (GK) rats, a spontaneously diabetic model.

View Article and Find Full Text PDF

Iptakalim, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, exerts neuroprotective effects on dopaminergic (DA) neurons against metabolic stress-induced neurotoxicity, but the mechanisms are largely unknown. Here, we examined the effects of iptakalim on functional K(ATP) channels in the plasma membrane (pm) and mitochondrial membrane using patch-clamp and fluorescence-imaging techniques. In identified DA neurons acutely dissociated from rat substantia nigra pars compacta (SNc), both the mitochondrial metabolic inhibitor rotenone and the sulfonylurea receptor subtype (SUR) 1-selective K(ATP) channel opener (KCO) diazoxide induced neuronal hyperpolarization and abolished action potential firing, but the SUR2B-selective KCO cromakalim exerted little effect, suggesting that functional K(ATP) channels in rat SNc DA neurons are mainly composed of SUR1.

View Article and Find Full Text PDF

A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.

View Article and Find Full Text PDF

Evidence suggests that 2-aminoethoxydiphenyl borate (2-APB) modulates intracellular Ca(2+) signals in a complex manner. 2-APB inhibits or potentiates intracellular Ca(2+) signals in different cell types, perhaps through different mechanisms. Here, we report a novel mechanism underlying 2-APB-induced inhibition of agonist-activated Ca(2+) oscillations in mouse pancreatic acinar cells, using patch-clamp and biochemical techniques.

View Article and Find Full Text PDF

The effect of noradrenaline (NE) on rat islet beta-cells was examined. NE reduced insulin secretion from rat islets exposed to extracellular solutions containing glucose at 5.5 or 16.

View Article and Find Full Text PDF

Hyperthermic spreading depression (HSD) in immature rat hippocampal slices is mediated by Na+/K(+)-ATPase failure. Here, we test whether depleting intracellular ATP serves as a possible mechanism for HSD genesis. Results indicate that (1) pre-incubation with 3 mM creatine for 3 h failed to prevent hyperthermic spreading depression occurrence; and (2) intracellular ATP concentration doubled during experimental hyperthermia.

View Article and Find Full Text PDF

Using the mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate limiting enzyme of the glycerol-phosphate NADH shuttle, we investigated the role of the NADH shuttle system in amylase secretion in response to acetylcholine (ACh) in pancreatic acinar cells. The pancreatic acinar cells of mGPDH-deficient mice were not different in histology and immunohistochemistry from those of wild-type mice. In both types of pancreatic acinar cells from wild-type and mGPDH-deficient mice, ACh similarly potentiated amylase secretion, measured in 30 minutes after the ACh stimulation.

View Article and Find Full Text PDF

We investigated the mechanism by which acetylcholine (ACh) regulates insulin secretion from rat pancreatic beta-cells. In an extracellular solution with 5.5 mM glucose, ACh increased the rate of insulin secretion from rat islets.

View Article and Find Full Text PDF