Publications by authors named "Teruki Sugiyama"

This study investigates the promotion of sodium chlorate (NaClO) crystallization through optical trapping, enhanced by the addition of gold nanoparticles (AuNPs) and silicon nanoparticles (SiNPs). Using a focused laser beam at the air-solution interface of a saturated NaClO solution with AuNPs or SiNPs, the aggregates of these particles were formed at the laser focus, the nucleation and growth of metastable NaClO (m-NaClO) crystals were induced. Continued laser irradiation caused these m-NaClO crystals to undergo repeated cycles of growth and dissolution, eventually transitioning to a stable crystal form.

View Article and Find Full Text PDF

The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges.

View Article and Find Full Text PDF

In this study, we conducted successful experiments on ethylenediamine sulfate (EDS), an organic compound, to investigate its enantioselectivity in chiral crystallization. We employed optical trapping with circularly polarized laser beams, using a continuous wave laser at 1064 nm. By focusing the laser at the air-solution interface of a heavy water-saturated EDS solution, the formation of sub-micrometer-sized chiral EDS crystals was verified.

View Article and Find Full Text PDF

Mapping of the spatial and temporal motion of particles inside an optical field is critical for understanding and further improvement of the 3D spatio-temporal control over their optical trapping dynamics. However, it is not trivial to capture the 3D motion, and most imaging systems only capture a 2D projection of the 3D motion, in which the information about the axial movement is not directly available. In this work, we resolve the 3D incorporation trajectories of 200 nm fluorescent polystyrene particles in an optical trapping site under different optical experimental conditions using a recently developed widefield multiplane microscope (imaging volume of 50 × 50 × 4 μm).

View Article and Find Full Text PDF

Amyloid fibril formation of cytochrome is spatially and temporally controlled with a combined method of disulfide bond cross-linking of cysteine-introduced variants and optical trapping, identifying that the structural change in the region containing Ala83 is essential for the amyloid fibril formation.

View Article and Find Full Text PDF

Optical binding has recently gained considerable attention because it enables the light-induced assembly of many-body systems; however, this phenomenon has only been described between directly irradiated particles. Here, we demonstrate that optical binding can occur outside the focal spot of a single tightly focused laser beam. By trapping at an interface, we assemble up to three gold nanoparticles with a linear arrangement which fully-occupies the laser focus.

View Article and Find Full Text PDF

Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing.

View Article and Find Full Text PDF

Ordered arrays of polymer nanostructures have been widely investigated because of their promising applications such as solar-cell devices, sensors, and supercapacitors. It remains a great challenge, however, to manipulate the shapes of individual nanostructures in arrays for tailoring specific properties. In this study, an effective strategy to prepare anisotropic polymer nanopillar arrays via photo-fluidization is presented.

View Article and Find Full Text PDF

We demonstrated the optical trapping-induced formation of a single large disc-like assembly (∼50 μm in diameter) of polystyrene (PS) nanoparticles (NPs) (100 nm in diameter) at a solution surface. Different from the conventional trapping behavior in solution, the assembly grows from the focus to the outside along the surface and contains needle structures expanding radially in all directions. Upon switching off the trapping laser, the assembly disperses and needle structures disappear, while the highly concentrated domain of the NPs is left for a while.

View Article and Find Full Text PDF

Laser trapping at an interface is a unique platform for aligning and assembling nanomaterials outside the focal spot. In our previous studies, Au nanoparticles form a dynamically evolved assembly outside the focus, leading to the formation of an antenna-like structure with their fluctuating swarms. Herein, we unravel the role of surface plasmon resonance on the swarming phenomena by tuning the trapping laser wavelength concerning the dipole mode for Au nanoparticles of different sizes.

View Article and Find Full Text PDF

Plasmonic manipulation using well-designed triangular trimeric gold nanostructures achieves a giant (greater than 50%) crystal enantiomeric excess (CEE) of sodium chlorate (NaClO). Stronger asymmetric interactions between molecule and light are pursued to reach high enantiomeric excess. The well-designed gold nanostructures immersed in a saturated NaClO DO solution were irradiated with linear, left-hand, and right-hand circular polarizations of a 1064 nm continuous-wave laser.

View Article and Find Full Text PDF

1D polymer nanomaterials have attracted significant interest in recent years because of their unique properties and promising applications in various fields. It is, however, still a challenge to fabricate polymer nanoarrays with desired sizes and controlled morphologies. Here, an unprecedented approach, the laser-assisted nanowetting (LAN) method, to selectively fabricate polymer nanoarrays is presented.

View Article and Find Full Text PDF

We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission.

View Article and Find Full Text PDF

We have succeeded in label-free visualization of spatiotemporal dynamics of laser-induced crystal precursors in aqueous solutions. The tracking-free evaluation of the diffusion-coefficient field for the observation domain with tens of micrometers on a side from microscopy movie data is realized by particle image diffusometry (PID). PID revealed the time fluctuation of coverage composition with the nonuniform space distribution of diffusion coefficients by the prenucleation clusters.

View Article and Find Full Text PDF

Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL).

View Article and Find Full Text PDF

Femtosecond (fs)-laser-induced crystallization as a novel crystallization technique was proposed for the first time by our group, where the crystallization time can be significantly shortened under fs laser irradiation. Similarly, we have further extended our investigation to amyloid fibril formation, also known as a nucleation-dependence process. Here we demonstrate that the necessary time for amyloid fibril formation can be significantly shortened by fs laser irradiation, leading to favorable enhancement.

View Article and Find Full Text PDF

Protein amyloids have received much attention owing to their correlation with serious diseases and to their promising mechanical and optical properties as future materials. Amyloid formation has been conducted by tuning temperature and chemical conditions, so that its nucleation and the following growth are analyzed as ensemble dynamics. A single spherical assembly of amyloid fibrils of cytochrome c domain-swapped dimer was successfully generated upon laser trapping.

View Article and Find Full Text PDF

Assembling dynamics of polystyrene nanoparticles by optical trapping is studied with utilizing transmission/reflection microscopy and reflection microspectroscopy. A single nanoparticle assembly with periodic structure is formed upon the focused laser irradiation at solution surface layer and continuously grows up to a steady state within few minutes. By controlling nanoparticle and salt concentrations in the colloidal solution, the assembling behavior is obviously changed.

View Article and Find Full Text PDF

We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.

View Article and Find Full Text PDF

We present laser trapping behavior of l-phenylalanine (l-Phe) at a surface of its unsaturated aqueous solution by a focused continuous-wave (CW) near-infrared (NIR) laser beam. Upon the irradiation into the solution surface, laser trapping of the liquid-like clusters is induced concurrently with local laser heating, forming an anhydrous plate-like crystal at the focal spot. The following laser irradiation into a central part of the plate-like crystal leads to laser trapping at the crystal surface not only for l-Phe molecules/clusters but also for polystyrene (PS) particles.

View Article and Find Full Text PDF

Laser trapping has served as a useful tool in physics and biology, but, before our work, chemists had not paid much attention to this technique because molecules are too small to be trapped in solution at room temperature. In late 1980s, we demonstrated laser trapping of micrometer-sized particles, developed various methodologies for their manipulation, ablation, and patterning in solution, and elucidated their dynamics and mechanism. In the 1990s, we started laser trapping studies on polymers, micelles, dendrimers, and gold, as well as polymer nanoparticles.

View Article and Find Full Text PDF

We have developed a novel laser-induced crystallization method utilizing local heat-induced bubble/water interface. Continuous laser beam of 1064 nm is focused on a gold nanoparticles thin film surface covered with glycine supersaturated aqueous solution. Light absorption of the film due to localized plasmon resonance caused local heating at the focal position and produced a single thermal vapor microbubble, which generated thermal gradient followed by convection flow around the bubble and eventually induced glycine crystallization and growth.

View Article and Find Full Text PDF

Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions.

View Article and Find Full Text PDF

Stable aqueous colloids of 10-nm sized organic nanoparticles were tailored by laser ablation of microcrystalline quinacridone in water. The nanocolloids were flaky in shape and had the dimension of a width of 13 (±5) nm and a height of 1.4 (±0.

View Article and Find Full Text PDF