Publications by authors named "Teruhisa Kato"

The urgent need for rapidly acting compounds in the development of antimalarial drugs underscores the significance of such compounds in overcoming resistance issues and improving patient adherence to antimalarial treatments. The present study introduces a high-throughput screening (HTS) approach using 1536-well plates, employing lactate dehydrogenase (PfLDH) combined with nitroreductase (NTR) and fluorescent probes to evaluate inhibition of the growth of the asexual blood stage of malaria parasites. This method was adapted to efficiently assess the speed of action profiling (SAP) in a 384-well plate format, streamlining the traditionally time-consuming screening process.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) remain a major global health challenge, with aerosol transmission being the primary route of spread. The use of antivirals as medical countermeasures to control SARS-CoV-2 transmission and spread is promising but remains to be clarified. The current study established and used an in vivo hamster aerosol transmission model system to evaluate the efficacy of the protease inhibitor ensitrelvir to prevent the spread of SARS-CoV-2.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of coronavirus disease 2019 (COVID-19) and continues to be a major health concern worldwide. Strategies to protect individuals at high risk of COVID-19 are critical but are currently a largely unmet need. We evaluated the oral antiviral drug ensitrelvir, which specifically targets the SARS-CoV-2 3CL protease, for its efficacy as a pre-exposure prophylactic treatment.

View Article and Find Full Text PDF

Viral proteases, the key enzymes that regulate viral replication and assembly, are promising targets for antiviral drug discovery. Herpesvirus proteases are enzymes with no crystallographically confirmed noncovalent active-site binders, owing to their shallow and polar substrate-binding pockets. Here, we applied our previously reported "Peptide-to-Small Molecule" strategy to generate novel inhibitors of β-herpesvirus proteases.

View Article and Find Full Text PDF

The small-molecule antiviral drug ensitrelvir targets the 3C-like protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study evaluated its inhibitory effect on viral replication in a delayed-treatment mouse model and investigated the relationship between pharmacokinetic (PK) parameters and pharmacodynamic (PD) effects. SARS-CoV-2 gamma-strain-infected BALB/c mice were orally treated with various doses of ensitrelvir starting 24 h post-infection.

View Article and Find Full Text PDF

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become established in the human population, making the need to develop safe and effective treatments critical. We have developed the small-molecule antiviral ensitrelvir, which targets the 3C-like (3CL) protease of SARS-CoV-2. This study evaluated the in vitro and in vivo efficacy of ensitrelvir compared with that of another SARS-CoV-2 3CL PI, nirmatrelvir.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health concern worldwide. Ensitrelvir (S-217622) has been evaluated as an antiviral treatment for COVID-19, targeting SARS-CoV-2 3C-like protease (3CL). Ensitrelvir has been reported to have comparable antiviral activity against some of the SARS-CoV-2 variants: alpha, beta, gamma, delta, and omicron (BA.

View Article and Find Full Text PDF
Article Synopsis
  • Oral antiviral agents, such as S-217622 (ensitrelvir), are being researched as effective treatments for COVID-19, alongside vaccination efforts.
  • S-217622 specifically targets the main protease of SARS-CoV-2, demonstrating significant antiviral activity and reducing viral load in infected hamsters.
  • This antiviral agent shows promise against various strains of the virus and is currently undergoing evaluation in a phase 3 clinical trial, highlighting its potential as an oral therapeutic option for COVID-19.
View Article and Find Full Text PDF

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) and a devastating worldwide health concern. Development of safe and effective treatments is not only important for interventions during the current pandemic, but also for providing general treatment options moving forward. We have developed ensitrelvir, an antiviral compound that targets the 3C-like protease of SARS-CoV-2.

View Article and Find Full Text PDF

Overcoming serious infectious diseases such as malaria, tuberculosis, and other neglected tropical diseases (NTDs) that threaten human life around the world is an important issue in global health. Most of these diseases are concentrated in developing and low-income countries, and in order to reinforce drug discovery activities, pharmaceutical companies are actively promoting industry-academia-government partnerships and utilizing funds to stimulate global health activities. In this presentation, three examples of our drug discovery activities are introduced.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of , the first oral noncovalent, nonpeptidic SARS-CoV-2 3CL protease inhibitor clinical candidate.

View Article and Find Full Text PDF

TrpA1 is an ion channel involved in nociceptive and inflammatory pain. It is implicated in the detection of chemical irritants through covalent binding to a cysteine-rich intracellular region of the protein. While performing an HTS of the Pfizer chemical collection, a class of pyrimidines emerged as a non-reactive, non-covalently binding family of agonists of the rat and human TrpA1 channel.

View Article and Find Full Text PDF

Inhibition of H(+),K(+)-ATPase is accepted as the most effective way of controlling gastric acid secretion. However, current acid suppressant therapy for gastroesophageal reflux disease, using histamine H(2) receptor antagonists and proton pump inhibitors, does not fully meet the needs of all patients because of their mechanism of action. This study sought to characterize the in vitro and in vivo pharmacology of a novel acid pump antagonist, N-(2-Hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide (PF-03716556), and to compare it with other acid suppressants.

View Article and Find Full Text PDF

A wide variety of contaminants derived from diesel and gasoline engines, tire, asphalt, and natural organic compounds is found in road dust. Polycyclic aromatic compounds (PACs) are the important toxic targets among various contents in road dust and diesel exhaust particulates (DEPs), and endocrine-disrupting activity of PACs was suggested. In the present study, aryl hydrocarbon receptor (AhR) ligand activity was confirmed in the extract of both road dust and DEPs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the solution-precipitation method using DMSO in drug discovery, focusing on the solid form of precipitates.
  • Findings show that when the precipitates are crystalline and given enough time (20 hours), their solubility matches that of powdered materials.
  • An automated birefringence diagnosis system was also developed to enhance the analysis of precipitates in drug discovery.
View Article and Find Full Text PDF

The thyroid hormone-disrupting activity of tetrabromobisphenol A (TBBPA), a flame retardant, and related compounds was examined. TBBPA, tetrachlorobisphenol A (TCBPA), tetramethylbisphenol A (TMBPA) and 3,3'-dimethylbisphenol A (DMBPA) markedly inhibited the binding of triiodothyronine (T3; 1 x 10(-10) M) to thyroid hormone receptor in the concentration range of 1 x 10(-7)-1 x 10(-4) M, while bisphenol A and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA and DMBPA did not exhibit thyroid hormonal activity in a thyroid hormone-responsive reporter assay using a Chinese hamster ovary cell line (CHO-K1) transfected with thyroid hormone receptor alpha1 or beta1, but TBBPA and TCBPA showed significant anti-thyroid hormone effects on the activity of T3 (1 x 10(-8) M) in the concentration range of 3 x 10(-6) - 5 x 10(-5) M.

View Article and Find Full Text PDF