Publications by authors named "Teruhiko Saito"

Novel approaches to the functionalization of commodity polymers could provide avenues for the synthesis of materials for next-generation electronic devices. Herein, we present a catalytic method for the conversion of common unsaturated polymers such as polybutadiene, polyisoprene, and styrene-butadiene copolymers [e.g.

View Article and Find Full Text PDF

We report the catalytic reduction of a C-O bond and the borylation by a rhodium complex bearing an X-type PAlP pincer ligand. We have revealed the reaction mechanism based on the characterization of the reaction intermediate and deuterium-labeling experiments. Notably, this novel catalytic system shows steric-hindrance-dependent chemoselectivity that is distinct from conventional Ni-based catalysts and suggests a new strategy for selective C-O bond activation by heterobimetallic catalysis.

View Article and Find Full Text PDF

The unique Rh-Al bond in recently synthesized Rh(PAlP) 1 {PAlP = pincer-type diphosphino-aluminyl ligand Al[NCH(P Pr)](CH)NMe} was investigated using the DFT method. Complex 1 has four doubly occupied nonbonding d orbitals on the Rh atom and one Rh d orbital largely participating in the Rh-Al bond which exhibits considerably large bonding overlap between Rh and Al atoms like in a covalent bond. Interestingly, Rh-Al polarization is observed in the bonding MO of 1, which is reverse to Rh-E (E = coordinating atom) polarization found in a usual coordinate bond.

View Article and Find Full Text PDF

We report rhodium complexes bearing PAlP pincer ligands with an X-type aluminyl moiety. IR spectroscopy and single-crystal X-ray diffraction analysis of a carbonyl complex exhibit the considerable σ-donating ability of the aluminyl ligand, whose Lewis acidity is confirmed through coordination of pyridine to the aluminum center. The X-type PAlP-Rh complexes catalyze C2-selective monoalkylation of pyridine with alkenes.

View Article and Find Full Text PDF

A d niobium(V) complex, NbCl(α-diimine) (1a), supported by a dianionic redox-active N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (α-diimine) ligand (ene-diamido ligand) served as a catalyst for radical addition reactions of CCl to α-olefins and cyclic alkenes, selectively affording 1:1 radical addition products in a regioselective manner. During the catalytic reaction, the α-diimine ligand smoothly released and stored an electron to control the oxidation state of the niobium center by changing between an η-(σ,π) coordination mode with a folded MNC metallacycle and a κ-(N,N') coordination mode with a planar MNC metallacycle. Kinetic studies of the catalytic reaction elucidated the reaction order in the catalytic cycle: the radical addition reaction rate obeyed first-order kinetics that were dependent on the concentrations of the catalyst, styrene, and CCl, while a saturation effect was observed at a high CCl concentration.

View Article and Find Full Text PDF

Highly regio- and stereoselective alkenylation of N-acylindoles with unactivated internal alkynes has been accomplished by cooperative nickel/aluminium catalysis to afford C3-alkenylated indoles. Coordination of the acyl moiety to a bulky aluminium-based Lewis acid plays a crucial role in the selective functionalization at the C3-position by electron-rich nickel(0) catalysis.

View Article and Find Full Text PDF

We report a method that ensures the selective alkylation of benzamides and aromatic ketones at the para-position via cooperative nickel/aluminum catalysis. Using a bulky catalyst/cocatalyst system allows reactions between benzamides and alkenes to afford the corresponding para-alkylated products. The origin of the high para-selectivity has also been investigated by density functional theory calculations.

View Article and Find Full Text PDF

The organosilicon reducing reagent 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (1a) was used for the one-electron, salt-free reduction of ((t)BuN═)NbCl3(py)2 (2), resulting in the formation of a neutral, triply chloride-bridged dinuclear niobium(IV) complex, [((t)BuN═)ClNb(py)](μ-Cl)3[((t)BuN═)Nb(py)2] (3) in moderately high yield. Heating 3 in toluene at 80 °C caused a unique intramolecular rearrangement of 3 to another neutral dinuclear complex, [Cl2Nb(py)](μ-Cl)(μ-N(t)Bu)2[ClNb(py)2] (4), in which two niobium(IV) atoms were bridged by one chloride atom and two imido ligands. Reaction of complex 3 with benzo[c]cinnoline produced a benzo[c]cinnoline-bridged dinuclear niobium(V) complex 7 by an overall two-electron reduction of benzo[c]cinnoline through a disproportionation of 3 into a mixture of a niobium(V) complex 2 and a niobium(III) complex, the latter of which efficiently reduced benzo[c]cinnoline.

View Article and Find Full Text PDF

Electron-rich organosilicon compounds, such as 1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2a), 2,5-dimethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2b), 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2c), and 1,1'-bis(trimethylsilyl)-1,1'-dihydro-4,4'-bipyridine (4), served as versatile reducing reagents of group 4-6 metal chloride complexes, such as Cp2TiCl2, Cp*2TiCl2 (Cp* = η(5)-C5Me5), Cp*TiCl3, Cp*TaCl4, and WCl4(PMe2Ph)2, to generate the corresponding low-valent metal species in a salt-free manner. Nitrogen-containing reductants, such as 2a-c and 4, had stronger reducing ability than the parent organosilicon reductants, 3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1a) and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1b), as well as a pyridine-derived reductant, 1,4-bis(trimethylsilyl)-1-aza-2,5-cyclohexadiene (3). These greater effects of 2a-c and 4 are likely due to their negative one-electron redox potentials, as typically demonstrated in the reduction of Cp2TiCl2, for which compounds 2a and 4 gave the corresponding one-electron reduced products, pyrazine-bridged and 4,4'-bipyridyl-bridged dimeric Ti(III) complexes 5 and 6, and compounds 2b and 2c afforded the same double chloride-bridged dimeric Ti(III) complex, [Cp2Ti]2(μ-Cl)2 (7), though 1a and 1b could not reduce Cp2TiCl2.

View Article and Find Full Text PDF

We developed a salt-free reduction of WCl6 using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) in toluene to give a low-valent trinulcear tungsten complex involving W(II) and W(III) centers, while in the presence of redox active ligands such as α-diketone and α-diimine the same reduction produced W(IV) complexes with the corresponding redox-active ligands, (α-diketone)WCl4 and (α-diimine)WCl4. A W(VI) complex with two α-diketone ligands, (α-diketone)2WCl2, was found to be synthetically equivalent to low-valent W(IV) species that trapped azopyridine to give (α-diketone)WCl2(azopyridine).

View Article and Find Full Text PDF

High-valent tantalum complexes having redox-active α-diimine ligands, (α-diimine)TaCl(n) (n = 3, 4), are prepared by the reaction of TaCl(5), α-diimine ligands, and an organosilicon-based reductant, 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene. Reductive cleavage of the C-Cl bond of polyhaloalkanes is accomplished by trichlorotantalum complexes having dianionic α-diimine ligands via electron transfer from the dianionic ligands, whereas oxidative decomposition of tetraphenylborate is observed using tetrachlorotantalum complexes with monoanionic α-diimine ligands through electron transfer to the monoanionic ligands. Chemically oxidized or reduced complexes of (α-diimine)TaCl(4) are isolated as ligand-centered redox products, [Cp(2)Co][(α-diimine)TaCl(4)] and [(α-diimine)TaCl(4)][WCl(6)], where the α-diimine ligand coordinates to the metal center as a dianionic or neutral ligand, respectively.

View Article and Find Full Text PDF

Mild and salt-free reduction of MCl(5) (M = Nb, Ta) has been achieved by using 3,6-bis(trimethylsilyl)-1,4-hexadiene derivatives as reducing reagents. The salt-contact-free low-valent TaCl(3) exhibits high catalytic activity for the trimerization of ethylene to 1-hexene (>1000 TOF) with excellent selectivity (>98%). This salt-free tantalum system enables us to observe new evidence for a metallacycle mechanism.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhg98cepkf6gqhf39f5b7s2rt47rajh4r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once