Background: TogoID ( https://togoid.dbcls.jp/ ) is an identifier (ID) conversion service designed to link IDs across diverse categories of life science databases.
View Article and Find Full Text PDFThe Human Phenotype Ontology (HPO) is widely used for annotating clinical text data, and sufficient annotation is crucial for the effective utilization of clinical texts. It was known that the use of LLMs can successfully extract symptoms and findings, but cannot annotate them with the HPO. We hypothesized that one of the potential issue for this is the lack of appropriate terms in the HPO.
View Article and Find Full Text PDFPrevious approaches to create a controlled vocabulary for Japanese have resorted to existing bilingual dictionary and transformation rules to allow such mappings. However, given the possible new terms introduced due to coronavirus disease 2019 (COVID-19) and the emphasis on respiratory and infection-related terms, coverage might not be guaranteed. We propose creating a Japanese bilingual controlled vocabulary based on MeSH terms assigned to COVID-19 related publications in this work.
View Article and Find Full Text PDFGenomics Inform
September 2021
The coronavirus disease 2019 (COVID-19) pandemic has led to a flood of research papers and the information has been updated with considerable frequency. For society to derive benefits from this research, it is necessary to promote sharing up-to-date knowledge from these papers. However, because most research papers are written in English, it is difficult for people who are not familiar with English medical terms to obtain knowledge from them.
View Article and Find Full Text PDFThe Human Phenotype Ontology (HPO) is the de facto standard ontology to describe human phenotypes in detail, and it is actively used, particularly in the field of rare disease diagnoses. For clinicians who are not fluent in English, the HPO has been translated into many languages, and there have been four initiatives to develop Japanese translations. At the Biomedical Linked Annotation Hackathon 6 (BLAH6), a rule-based approach was attempted to determine the preferable Japanese translation for each HPO term among the candidates developed by the four approaches.
View Article and Find Full Text PDFBackground: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions.
View Article and Find Full Text PDFPositional MEDLINE (PosMed; http://biolod.org/PosMed) is a powerful Semantic Web Association Study engine that ranks biomedical resources such as genes, metabolites, diseases and drugs, based on the statistical significance of associations between user-specified phenotypic keywords and resources connected directly or inferentially through a Semantic Web of biological databases such as MEDLINE, OMIM, pathways, co-expressions, molecular interactions and ontology terms. Since 2005, PosMed has long been used for in silico positional cloning studies to infer candidate disease-responsible genes existing within chromosomal intervals.
View Article and Find Full Text PDFThe RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN's original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies.
View Article and Find Full Text PDF