Publications by authors named "Teruaki Nasu"

Although widespread pain, such as fibromyalgia, is considered to have a central cause, peripheral input is important. We used a rat repeated cold stress (RCS) model with many characteristics common to fibromyalgia and studied the possible involvement of decreased muscle pH in muscle mechanical hyperalgesia. After a 5-day RCS, the muscle pH and the muscular mechanical withdrawal threshold (MMWT) decreased significantly.

View Article and Find Full Text PDF

Repeated cold stress (RCS) can trigger the development of fibromyalgia (FM)-like symptoms, including persistent deep-tissue pain, although nociceptive changes to the skin have not been fully characterized. Using a rat RCS model, we investigated nociceptive behaviors induced by noxious mechanical, thermal, and chemical stimuli applied to plantar skin. Neuronal activation in the spinal dorsal horn was examined using the formalin pain test.

View Article and Find Full Text PDF

Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are essential for neuronal development and survival in embryo. However, after birth they play pivotal roles in the generation of hyperalgesia in many painful conditions. Both factors are believed to act on different groups of primary afferents, but interaction between them has not yet been studied.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a debilitating disease characterized by generalized and persistent musculoskeletal pain. Although central mechanisms are strongly implicated in the pathogenesis of FM, the involvement of peripheral mechanisms is poorly understood. To understand the peripheral nociceptive mechanisms, we examined muscular nociceptors in an FM model, which was made by exposing rats to repeated cold stress (RCS).

View Article and Find Full Text PDF

Many people suffer from a major depressive disorder, and chronic pain conditions are often associated with depressive symptoms. Neurotropin, an extract from the inflamed skin of rabbits inoculated with vaccinia virus, has been used for pain relief. Decrease of brain-derived neurotrophic factor (BDNF) in the brain is one of the proposed mechanisms for the major depressive disorders, and Neurotropin has been reported to restore the decreased BDNF in the hippocampus.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotropin, derived from rabbit skin and activated by the vaccinia virus, is used in China and Japan for chronic pain, focusing on its intravenous, oral, and intramuscular administration.
  • In a study involving rats, intramuscular neurotropin effectively reduced pain caused by repeated cold stress without affecting normal rats, showing a lasting analgesic effect for about 3 hours.
  • The research suggests that neurotropin's pain-relieving mechanism involves multiple spinal receptors, including serotonergic and GABAergic receptors, highlighting its potential as a treatment for muscular pain.
View Article and Find Full Text PDF

Chronic muscle pain of the neck, shoulder and low back is quite common and often related to a stressed condition. In this study we tried to make a model of long-lasting muscle mechanical hyperalgesia based on one type of stress, repeated cold stress (RCS) (Kita T, Hata T, Yoneda R, Okage T. Stress state caused by alternation of rhythm in environmental temperature, and the functional disorders in mice and rats.

View Article and Find Full Text PDF