Publications by authors named "Teruaki Hayakawa"

Mesoporous carbons (MPCs) with a bimodal distribution of pore diameters are more advantageous than their monomodal counterparts for applications in adsorption, catalysis, and drug delivery systems; however, reports on their fabrication remain limited. In this study, we successfully fabricated bimodal MPCs using a soft template method with poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA)--poly(4-vinylpyridine) (P4VP)--polystyrene (PS) and resol. The blend samples formed microphase-separated structures comprising PTFEMA spheres, PS cylinders, and matrix domains composed of P4VP and resol, leading to the separation of the PTFEMA and PS domains.

View Article and Find Full Text PDF

Poly(amic ‍acid) ‍nanoparticles ‍prepared ‍by ‍‍precipitation ‍polymerization with a dispersant were evaluated by small-angle X-ray scattering (SAXS) and field-emission scanning electron microscopy (FE-SEM). The particle size evaluation of poly(amic acid) nanoparticles in the liquid phase by SAXS was performed to gain insight into the size control of poly(amic acid) nanoparticles, and showed good agreement with visual observation by FE-SEM, explaining the effect of the dispersant in obtaining polyimide nanoparticles with small particle size. This indicates that the particle size is maintained without change during the solvent evaporation process.

View Article and Find Full Text PDF

While block copolymer (BCP) lithography is theoretically capable of printing features smaller than 10 nm, developing practical BCPs for this purpose remains challenging. Herein, we report the creation of a chemically tailored, highly reliable, and practically applicable block copolymer and sub-10-nm line patterns by directed self-assembly. Polystyrene-block-[poly(glycidyl methacrylate)-random-poly(methyl methacrylate)] (PS-b-(PGMA-r-PMMA) or PS-b-PGM), which is based on PS-b-PMMA with an appropriate amount of introduced PGMA (10-33 mol%) is quantitatively post-functionalized with thiols.

View Article and Find Full Text PDF

The formation of ABC triblock terpolymers through solution casting is still challenging. In this study, core-shell double gyroid network structures are fabricated via solution casting using poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) (F)-b-[poly(4-vinylpyridine) (P4VP) (P)]-b-[polystyrene (PS) (S)] (FPS) triblock terpolymers in N,N-dimethylformamide (DMF). Upon heat treatment, the polymer tends to form a sphere-in-lamellar structure at the F/S interface.

View Article and Find Full Text PDF

We report the preparation of chiral silica using a linear polysiloxane main chain with a preferred-handed helical structure as the template. Poly(methylvinyl siloxane) (PMVS) with a cysteine derivative side chain designated as PMVS-Cys was prepared using anionic polymerization and an ene-thiol reaction. PMVS-Cys forms a helical conformation in both solution and film via hydrogen bonding between amide groups at side chains.

View Article and Find Full Text PDF

Herein, CoN, CuN, and NiN complexes with a 14-membered ring hexaazamacrocycle ligand HHAM were synthesised as precursors for ORR and CORR catalysts a one-pot, gram-scale synthesis procedure, which involved microwave heating for only 10 min. Detailed structures of the obtained 14MR-MN complex were revealed by single-crystal X-ray diffraction measurements.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is typically achieved with a chiral luminophore. However, using a helical nanosized fused quartz cell consisting of chiral silica, we could control the wavelength and helical sense of the CPL of an achiral luminophore. Chiral silica with a helical nanostructure was prepared by calcining a mixture of polyhedral oligomeric silsesquioxane (POSS)-functionalized isotactic poly(methacrylate) (-PMAPOSS) and a small amount of chiral dopant.

View Article and Find Full Text PDF

A precursor diblock copolymer with a silicon backbone, polystyrene--poly(methylvinylsiloxane), was synthesized, and 1,1,2,2-perfluorodecanethiol was quantitatively introduced into the backbone a thiol-ene reaction to yield a novel coil-rod diblock copolymer, poly(styrene--poly(2-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)thio)ethyl)methylsiloxane). The ultra-hydrophobicity of the introduced perfluoroalkyl side chain enhanced the segregation between counter-blocks and significantly increased the value, which is essential for minimizing the size of self-assembled domains for lithographic applications. Thus, self-assembled domains with a minimal spacing of approximately 10 nm were formed.

View Article and Find Full Text PDF

-cyclohexylphthalimide-substituted trifluoroacetylamino (CFCONH-) group (3TfAPI), which forms an intramolecular hydrogen bond, was synthesized, and it exhibited a bright yellow fluorescence owing to the excited-state intramolecular proton transfer (ESIPT) in the solution and crystalline states. In addition, CFCONH-substituted phthalic anhydride (3TfAPA) was synthesized, which was attached to the termini of a blue-fluorescent semi-aromatic polyimide (PI) chain. Owing to the efficient Förster resonance energy transfer (FRET) occurring from the main chain to the termini and the suppression of deprotonation (anion formation) at the 3TfAPA moiety by HSO doping, the resulting PI films display bright white fluorescence.

View Article and Find Full Text PDF

Nonplatinum metal (NPM) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) have been developed; however, NPM catalysts still need to be improved in terms of both their catalytic activity and durability. To overcome these problems, an Fe active site contained within a more compact ligand than conventional, porphyrinic, 16-membered ring ligands, or more specifically, a hexaaza macrocyclic ligand with a 14-membered ring (14MR), was developed. In this study, the durability of the Fe-14MR complex was compared to that of Fe phthalocyanine (FePc), which has a 16-membered ring ligand, using in situ X-ray absorption spectroscopy; demetalation of the Fe complexes was directly observed during electrochemical experiments performed under acidic ORR conditions.

View Article and Find Full Text PDF

A strategy to obtain chiral silica using an achiral stereoregular polymer with polyhedral oligomeric silsesquioxane (POSS) side chains is described herein. The preferred helical conformation of the POSS-containing polymer could be achieved by mixing isotactic polymethacrylate-functionalized POSS (-PMAPOSS) and a chiral dopant. The array structure of POSS molecules, which are placed along the helical conformation, is memorized even after removing the chiral dopant at high temperatures, leading to a chiral silica compound with exclusive optical activity after calcination.

View Article and Find Full Text PDF

Marine mussels efficiently adhere under wet conditions by precisely controlling the hierarchical structure of the adhesive plaque through sequential mussel foot protein secretion in the foot-tip cavity. Chemical analysis of the non-uniform mussel plaque morphology has been performed using spectromicroscopy; however, the mesoscopic morphology has not been elucidated yet because of the limited spatial resolution of conventional chemical imaging techniques. We investigated the chemical speciation in the non-uniform mussel plaque morphology employing scanning transmission soft X-ray spectromicroscopy (STXM).

View Article and Find Full Text PDF

Nanocellular polymer foams have shown significant potential for industrial applications because of their superior thermal, mechanical, and optical properties. Some of these properties may be further improved by enhancing the ordering of cell structures. However, it is challenging for conventional foaming methods to control both the cell size and ordering at the nanoscale.

View Article and Find Full Text PDF

An instrumentation technique for real-time, and real space observation of microphase separation was proposed for ultra-high molecular weight block copolymer thin films (1010 kg mol, domain spacing of 180 nm) under high solvent vapor swelling conditions. This is made possible by a combination of a homebuilt chamber which is capable of supplying sufficient amount of vapor, and force-distance curve measurements which gives real-time swollen film thickness and allow active feedback for controlling the degree of swelling. We succeeded in monitoring the domain coarsening of perpendicular lamellar structures in polystyrene--poly(methyl methacrylate) thin films for eight hours tapping mode imaging.

View Article and Find Full Text PDF

We report a facile synthetic approach to create stable radical block copolymers containing a secondary fluorinated block via anionic polymerization using a bulky, sterically hindered countercation composed of a sodium ion and di-benzo-18-crown-6 complex. The synthetic conditions described in this report allowed for controlled molecular weights and dispersity (<1.3) of both homopolymers: poly(2,2,6,6-tetramethyl-1-piperidinyloxy-methacrylate) (PTMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as well as their block copolymers (PTMA--PTFEMA).

View Article and Find Full Text PDF

Further development of next-generation block copolymer (BCP) lithography processes is contingent on comprehensive studies of the ordering dynamics of high-χ BCPs that can form sub-10 nm features on thin films. However, quantitative analyses of the degree of ordering on the surface and cross sections of thin films have been difficult to execute. To tackle this challenge, we employ a perpendicular lamella-forming high-χ BCP, poly(polyhedral oligomeric silsesquixone--2,2,2-trifluoroethyl methacrylate) (PMAPOSS--PTFEMA), and reveal that the high-χ PMAPOSS--PTFEMA requires three times the activation energy () compared to that of poly(styrene--methyl methacrylate) (PS--PMMA) for defect annihilation, at = 2600 ± 420 kJ mol, and a transition from a fast ordering regime with a growth exponent of Φ = 0.

View Article and Find Full Text PDF

A chemically tailored high-χ block copolymer (BCP), polystyrene-block-poly[2-hydroxy-3-(2,2,2-trifluoroethylsulfanyl)propyl methacrylate] (PS-b-PHFMA), was designed to incorporate tailored surface affinities and chemical incompatibilities for engineering perpendicular lamellae using thermal annealing. PS-b-PHFMA was synthesized via the sequential anionic polymerization of styrene and glycidyl methacrylate and the post-polymerization functionalization of the glycidyl moieties with 2,2,2-trifluoroethanethiol. The bulk studies revealed lamellae with a minimum domain spacing of 9.

View Article and Find Full Text PDF

The cyclotriphosphazene-substituted diazoacetate homopolymer (polyPNDA') (PNDA' = hexaphenoxy-substituted phosphazene-containing methylene) and a novel poly(substituted methylene) block copolymer, polyPNDA'--poly(hexyloxycarbonylmethylene) (polyPNDA'--polyHDA'), were synthesized, and the self-assembly behavior of these polymers was studied in detail. A hexagonally packed aggregated structure was observed in the self-assembled structure of polyPNDA', whereas a lamellar structure was observed in the microphase-separated nanoassembly of polyPNDA'--polyHDA'. These results indicate that a hierarchical structure composed of highly regular polyPNDA' nanoaggregates and the long-range microphase-separated polyPNDA' and polyHDA' domains had formed.

View Article and Find Full Text PDF

This study demonstrates the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)-immobilized Petri dishes by drop-casting a star-shaped copolymer of hyperbranched polystyrene (HBPS) possessing PNIPAM arms (HBPS-g-PNIPAM) functionalized with polar groups. HBPS was synthesized via reversible addition-fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP), and HBPS polymers with different terminal structures were prepared by changing the monomer structure. HBPS-g-PNIPAM was synthesized by the grafting of PNIPAM from each terminal of HBPS.

View Article and Find Full Text PDF

In this study, a series of perpendicular lamellae-forming poly(polyhedral oligomeric silsesquioxane methacrylate-block-2,2,2-trifluoroethyl methacrylate)s (PMAPOSS-b-PTFEMAs) was developed based on the bottom-up concept of creating a simple yet effective material by tailoring the chemical properties and molecular composition of the material. The use of silicon (Si)-containing hybrid high-χ block copolymers (BCPs) provides easy access to sub-10 nm feature sizes. However, as the surface free energies (SFEs) of Si-containing polymers are typically vastly lower than organic polymers, this tends to result in the selective segregation of the inorganic block onto the air interface and increased difficulty in controlling the BCP orientation in thin films.

View Article and Find Full Text PDF

The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive.

View Article and Find Full Text PDF

The directed self-assembly (DSA) of block co-polymers (BCPs) can realize next-generation lithography for semiconductors and a variety of soft materials. It is imperative to simultaneously achieve many requirements such as a high resolution, orientation control of micro-domains, etch selectivity, rapid and mild annealing, a low cost, and compatibility with manufacturing for developing suitable BCPs. Here, we describe a new design for modified polysiloxane-based BCPs targeted for sub-10-nm-wide lines, which are able to form perpendicularly oriented lamellar structures in thin films.

View Article and Find Full Text PDF

An alkylated cage silsesquioxane (1), targeting for a new class of bottom-up-type fabricating materials, was successfully synthesized, and its self-assembled structure is described and discussed herein. Through this, it was found that the intermolecular interaction of long alkyl chains of 1 could be manipulated by thermal annealing to form a long-range straight ordered hierarchical lamellar structure with a periodicity of around 5 nm. Subsequent transmission electron microscopy (TEM) clearly identified polyhedral oligomeric silsesquioxane (POSS) molecules of 1 arranged in a highly ordered fashion, with a "head-to-head" type bilayered structure.

View Article and Find Full Text PDF

A nanostructure consisting of rectangular polyhedral oligomeric silsesquioxane (POSS) nanodomains packed into a hexagonal lattice was observed in POSS-containing AB star-branched polymers. The AB star-branched polymers, which comprised polystyrene (A) and bulky POSS-containing poly(methacrylate) (PMAPOSS) (B) units, were synthesized by anionic polymerization and addition reaction. The self-assembled structures of the AB star-branched polymers were studied via transmission electron microscopy (TEM) and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively).

View Article and Find Full Text PDF