To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.
View Article and Find Full Text PDFBiomaterials are engineered to develop an interaction with living cells for therapeutic and diagnostic purposes. The last decade reported a tremendously rising shift in the requirement for miniaturized biomedical implants exhibiting high precision and comprising various biomaterials such as non-biodegradable titanium (Ti) alloys and biodegradable magnesium (Mg) alloys. The excellent mechanical properties and lightweight characteristics of Mg AZ91D alloy make it an emerging material for biomedical applications.
View Article and Find Full Text PDFThe non-degradable metallic implants, such as bone screws, often act as the source of dysfunction and harmful corrosion products in the aqueous environment inside the human body. Many of these implants are fixed either temporarily or permanently into the human body, and therefore, both need to match tight tolerances with a remarkably finished surface to eradicate burrs or striations. In this regard, the new generation of degradable magnesium (Mg) alloy implants with excellent osseointegration and low elasticity (like that of human bone), minimizing stress shielding, have been identified as potential candidates to challenge surgical procedures reintervention.
View Article and Find Full Text PDFTwo-dimensional (2D) allotropes of tellurium (Te), recently coined as tellurene, are currently an emerging topic of materials research due to the theoretically predicted exotic properties of Te in its ultrathin form and at the single atomic layer limit. However, a prerequisite for the production of such new and single elemental 2D materials is the development of simple and robust fabrication methods. In the present work, we report three different 2D superstructures of Te on Au(111) surfaces by following an alternative experimental deposition approach.
View Article and Find Full Text PDFA novel molecularly imprinted monolithic (MIM) column was designed and fabricated using the epitope approach, and was used for the selective capillary microextraction (CME) of the neuropeptides neurotensin (NT) and neuromedin N (NmN). The MIMs were synthesized in a capillary by thermally initiated polymerization of the functional monomer (methacrylic acid (MAA)), in the presence of a dummy template (Pro-Tyr-Ile-Leu (PYIL)), a crosslinker and porogens. The resulting monoliths were characterized by scanning electron microscopy, pore size distribution measurement, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFThe data presented in this article are related to the measurements in the contribution titled: 'Tarnished silver-copper surfaces reduction using remote helium plasma at atmospheric pressure studied by means of high-resolution synchrotron x-ray photoelectron microscopy' published in Corrosion Science. X-ray photoelectron spectra were collected from pure silver, sterling silver (92.5 w% Ag and 7.
View Article and Find Full Text PDFEffective corrosion inhibition of mild steel 1030 at 0.01 M NaCl concentration was achieved by the use of the nontoxic surfactant salt cetrimonium trans-4-hydroxy-cinnamate (CTA-4OHcinn). Polarization analysis on the steel samples immersed for 24 h in the control and CTA-4OHcinn-containing solutions shows the development of a passivation potential that is more obvious at higher inhibitor concentrations along with a maximum inhibition efficiency of 97.
View Article and Find Full Text PDFChemical inhibitors are widely used to protect metallic alloys from corrosion in aqueous environments. This Letter investigates the possible synergistic behavior of a quaternary ammonium carboxylate compound toward the development of a new system taking advantage of the surface activity of a known antimicrobial surfactant molecule, hexadecyl trimethylammonium cation, combined with a known organic corrosion inhibitor, the -4-hydroxy-cinnamate anion. Short-term potentiodynamic polarization (PP) studies combined with immersion in aqueous chloride solutions demonstrated the high inhibition efficiency of the combination of ions, and NMR pfg-diffusion measurements revealed micellar formation that was concentration- and pH-dependent.
View Article and Find Full Text PDFThe modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth.
View Article and Find Full Text PDFDeep Eutectic Solvents (DESs) are hygroscopic liquids composed of a hydrogen bond donor (HBD) and acceptor (HBA). Their physical, chemical and electrochemical properties can be tailored to use them as solvents for different applications, i.e.
View Article and Find Full Text PDFThis study targets the synthesis of high external-porosity poly(styrene-co-divinylbenzene) monolithic support structures with macropore and globule sizes in the sub-micron range, aiming at the realization of high-speed and high-resolution gradient separations of intact proteins and peptides. The thermodynamic and kinetic aspects of the free-radical polymerization synthesis were adjusted by tuning the porogen to monomer ratio, the porogen ratio, the initiator content, and polymerization temperature. Next, column morphology was linked to eddy-dispersion and mobile-phase mass-transfer contributions and the chromatographic performance limits were benchmarked against conventional packed columns and silica monoliths.
View Article and Find Full Text PDFIn the present study, cylindrical and laterally elongated pillar array columns were investigated for use in capillary electrochromatography. Minimal theoretical plate heights of H = 1.90 and 1.
View Article and Find Full Text PDFThe performance of columns packed with 1.7 µm particles for aqueous size-exclusion chromatography was assessed at high-pressure conditions and linked to particle- and column-bed integrity. Decreasing the particle size from 3.
View Article and Find Full Text PDFDense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood.
View Article and Find Full Text PDFOrganofunctional silanes are applied as coupling agents between organic coatings and low carbon steel substrates to promote adhesion. Although the metal oxide-silane interface plays an important role in the performance of the entire overlying coating system, it remains challenging to obtain a clear understanding of the interfacial molecular bonding mechanism and its influence on adhesion. In this work, time-of-flight secondary ion mass spectrometry is used to study interfacial interactions between aminopropyl triethoxysilane (APS) and low carbon steel.
View Article and Find Full Text PDFIn this work, structural and active corrosion inhibition effects induced by lithium ion addition in organic-inorganic coatings based on poly(methyl methacrylate) (PMMA)-silica sol-gel coatings have been investigated. The addition of increasing amounts of lithium carbonate (0, 500, 1000, and 2000 ppm), yielded homogeneous hybrid coatings with increased connectivity of nanometric silica cross-link nodes, covalently linked to the PMMA matrix, and improved adhesion to the aluminum substrate (AA7075). Electrochemical impedance spectroscopy (EIS), performed in 3.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) are a new class of solvents with wider potential window than that of water and high electrochemical stability, making them potential candidates for a wide range of electrochemical systems. However, due to the hygroscopic nature of DESs, the presence of latent water is unavoidable. Therefore, understanding the interfacial structure and the electrosorption and distribution of residual water at the electrified interface is of great importance for the use of these solvents in electrochemical systems.
View Article and Find Full Text PDFThis work presents a simple, fast (20 min treatment), inexpensive, and highly efficient method for synthesizing nitrogen-doped titanium dioxide (N-TiO) as an enhanced visible light photocatalyst. In this study, N-TiO coatings were fabricated by atmospheric pressure dielectric barrier discharge (DBD) at room temperature. The composition and the chemical bonds of the TiO and N-TiO coatings were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS).
View Article and Find Full Text PDFShaping metal-organic frameworks (MOFs) into robust particles with a controllable size is of large interest to the field of adsorption. Therefore, a method is presented here to produce robust MOF beads of different sizes, ranging from 250 μm to several millimeters, which, moreover, preserve the adsorption properties of the unformulated MOF. A simple, mild, and flexible method is demonstrated with the zeolitic imidazolate framework-8 (ZIF-8)/polyvinyl formal composite material.
View Article and Find Full Text PDFWe report on the ability to change the layer properties of porous layered radially elongated pillar (PLREP) array columns and its relevance to the separation efficiency. The adjustment of the preparation condition resulted in the formation of a 1.2-fold thicker layer than the layer produced in the preceding study.
View Article and Find Full Text PDFThe performance of a porous-layered radially elongated pillar (PLREP) array column in a commercial nano-LC system was examined by performing separation of alkylphenones and peptides. The mesoporous silica layer was prepared by sol-gel processing of a mixture of tetramethoxysilane and methyltrimethoxysilane on REPs filling a 16.5 cm long, 1 mm wide channel (three lanes of 5.
View Article and Find Full Text PDFGreen, stable, and wide electrochemical window deep eutectic solvents (DESs) are ideal candidates for electrochemical systems. However, despite several studies of their bulk properties, their structure and properties under electrified confinement have barely been investigated, which has hindered widespread use of these solvents in electrochemical applications. In this Letter, we explore the electrical double layer structure of 1:2 choline chloride-urea (Reline), with a particular focus on the electrosorption of the hydrogen bond donor on a graphene electrode using atomistic molecular dynamics simulations.
View Article and Find Full Text PDFSuperhydrophobic surfaces are highly promising for self-cleaning, anti-fouling and anti-corrosion applications. However, accurate assessment of the lifetime and sustainability of super-hydrophobic materials is hindered by the lack of large area characterization of superhydrophobic breakdown. In this work, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is explored for a dynamic study of wetting transitions on immersed superhydrophobic arrays of silicon nanopillars.
View Article and Find Full Text PDFIn this study, a new self-healing shape memory polymer (SMP) coating was prepared to protect the aluminum alloy 2024-T3 from corrosion by the incorporation of dual-function microspheres containing polycaprolactone and the corrosion inhibitor 8-hydroxyquinoline (8HQ). The self-healing properties of the coatings were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and scanning electrochemical microscopy following the application of different healing conditions. The results demonstrated that the coating possessed a triple-action self-healing ability enabled by the cooperation of the 8HQ inhibitor, the SMP coating matrix, and the melted microspheres.
View Article and Find Full Text PDF