In our recently published study, we provided in vitro as well as in vivo data demonstrating the involvement of TRM2/RNC1 in homologous recombination based repair (HRR) of DNA double strand breaks (DSBs), in support of such claims reported earlier. To further validate its role in DNA DSB processing, our present study revealed that the trm2 single mutant displays higher sensitivity to persistent induction of specific DSBs at the MAT locus by HO-endonuclease with higher sterility rate among the survivors compared to wild type (wt) or exo1 single mutants. Intriguingly, both sensitivity and sterility rate increased dramatically in trm2exo1 double mutants lacking both endo-exonucleases with a progressively increased sterility rate in trm2exo1 double mutants with short-induction periods, reaching a very high level of sterility with persistent DSB inductions.
View Article and Find Full Text PDFWe previously identified an endo-exonuclease that is highly expressed in cancer cells and plays an important role in DSB repair mechanisms. A small molecular compound pentamidine, which specifically inhibited nuclease activity of the isolated endo-exonuclease from yeast as well as from mammalian cells, was capable of sensitizing tumor cells to DNA damaging agents. In this study, we investigated the effect of precisely silencing the endo-exonuclease expression by small interfering RNA (siRNA) upon treatment with a variety of DNA damaging agents in mouse B16F10 melanoma cells.
View Article and Find Full Text PDFWe previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases.
View Article and Find Full Text PDFVascular hypotheses provide compelling pathogenic mechanisms for the etiology of avascular necrosis of the femoral head (ANFH). A decrease in local blood flow of the femoral head has been postulated to be the cause of the disease. Several studies in human and animal models of ANFH have shown microvascular thrombosis.
View Article and Find Full Text PDFDNA repair mechanisms are essential for cellular survival in mammals. A rapid repair of DNA breaks ensures faster growth of normal cells as well as cancer cells, making DNA repair machinery, a potential therapeutic target. Although efficiency of these repair processes substantially decrease the efficacy of cancer chemotherapies that target DNA, compromised DNA repair contributes to mutagenesis and genomic instability leading to carcinogenesis.
View Article and Find Full Text PDFEnhanced DNA repair in many cancer cells can be correlated to the resistance to cancer treatment, and thus contributes to a poor prognosis. Ionizing radiation and many anti-cancer drugs induce DNA double-strand breaks (DSBs), which are usually regarded as the most toxic types of DNA damages. Repair of DNA DSBs is vital for maintaining genomic stability and hence crucial for survival and propagation of all cellular organisms.
View Article and Find Full Text PDFRecent studies suggest that erythropoietin plays an important role in the process of neoplastic transformation and malignant phenotype progression observed in malignancy. To study the role of erythropoietin and its receptor (EPOR) on the response of cancer cells in vitro, we used two solid tumor cell lines, namely the human malignant glioma cell line U87 and the primary cervical cancer cell line HT100. All experiments were done with heat-inactivated fetal bovine serum in order to inactivate any endogenous bovine erythropoietin.
View Article and Find Full Text PDFDNA repair mechanisms are crucial for the maintenance of genomic stability and are emerging as potential therapeutic targets for cancer. In this study, we report that the endo-exonuclease, a protein involved in the recombination repair process of the DNA double-stranded break pathway, is overexpressed in a variety of cancer cells and could represent an effective target for developing anticancer drugs. We identify a dicationic diarylfuran, pentamidine, which has been used clinically to treat opportunistic infections and is an inhibitor of the endo-exonuclease as determined by enzyme kinetic assay.
View Article and Find Full Text PDFGene targeting is a technique that allows the introduction of predefined alterations into chromosomal DNA. It involves a homologous recombination reaction between the targeted genomic sequence and an exogenous targeting vector. In theory, gene targeting constitutes the ideal method of gene therapy for single gene disorders.
View Article and Find Full Text PDFKu is a heterodimer of M(r) 70,000 and M(r) 86,000 subunits. It binds with strong affinity to DNA ends and is indispensable for nonhomologous DNA end joining (NHEJ) and V(D)J recombination. In this study, we investigated whether down-regulation of the Ku86 gene, by 2'-O-methoxyethyl/uniform phosphorothioate chimeric antisense oligonucleotides (ASOs), increases the sensitivity of the DNA-protein kinase catalytic subunit (PKcs)-proficient human glioma cell line (M059K), and its isogenic DNA-PKcs-deficient counterpart (M059J), to ionizing radiation and anticancer drugs.
View Article and Find Full Text PDF