Mixture toxicity was determined for 32 binary combinations. One chemical was the non-reactive, non-polar narcotic 3-methyl-2-butanone (always chemical A) and the other was a potentially reactive electrophile (chemical B). Bioluminescence inhibition in Allovibrio fischeri was measured at 15-, 30-, and 45-minutes of exposure for A, B, and the mixture (MX).
View Article and Find Full Text PDFRegul Toxicol Pharmacol
January 2024
The Lowest Observed (Adverse) Effect Level (LO(A)EL) values are point-of-departure (PoD) values that quantify repeat dose toxicity (RDT). Here, the uncertainty in the regulatory classification of these PoDs is investigated. In the application stage, the dose-response was approximated for a large set of series, giving an account of the possible presence of a hormesis zone.
View Article and Find Full Text PDFThe murine Local Lymph Node Assay (LLNA) is a test that produces numerical results (EC3 values) quantifying the sensitization potency of chemicals. These results are broadly used in toxicology and serve as a basis for various classifications, which determine subsequent regulatory decisions. The continuing interest in LLNA data and the diminished likelihood of new experimental EC3 data being generated sparked this investigation of uncertainty.
View Article and Find Full Text PDFIntegrating computational chemistry and toxicology can improve the read-across analog approach to fill data gaps in chemical safety assessment. In read-across, structure-related parameters are compared between a target chemical with insufficient test data and one or more materials with sufficient data. Recent advances have focused on enhancing the grouping or clustering of chemicals to facilitate toxicity prediction via read-across.
View Article and Find Full Text PDFA decision-scheme outlining the steps for identifying the appropriate chemical category and subsequently appropriate tested source analog(s) for data gap filling of a target chemical by read-across is described. The primary features used in the grouping of the target chemical with source analogues within a database of 10,039 discrete organic substances include reactivity mechanisms associated with protein interactions and specific-acute-oral-toxicity-related mechanisms (e.g.
View Article and Find Full Text PDFIn silico models are used to predict toxicity and molecular properties in chemical safety assessment, gaining widespread regulatory use under a number of legislations globally. This study has rationalised previously published criteria to evaluate quantitative structure-activity relationships (QSARs) in terms of their uncertainty, variability and potential areas of bias, into ten assessment components, or higher level groupings. The components have been mapped onto specific regulatory uses (i.
View Article and Find Full Text PDFA valuable approach to chemical safety assessment is the use of read-across chemicals to provide safety data to support the assessment of structurally similar chemicals. An inventory of over 6000 discrete organic chemicals used as fragrance materials in consumer products has been clustered into chemical class-based groups for efficient search of read-across sources. We developed a robust, tiered system for chemical classification based on (1) organic functional group, (2) structural similarity and reactivity features of the hydrocarbon skeletons, (3) predicted or experimentally verified Phase I and Phase II metabolism, and (4) expert pruning to consider these variables in the context of specific toxicity end points.
View Article and Find Full Text PDFAccording to the REACH Regulation, for all substances manufactured or imported in amounts of 10 or more tons per year, that are not exempted from the registration requirement, a Chemical Safety Assessment (CSA) must be conducted. According to CSA criteria, for these substances persistent, bioaccumulative and toxic (PBT), and very persistent and very bioaccumulative (vPvB) assessment is requested. In order to reduce the number of applications of the expensive bioaccumulation test it seems useful to search thresholds for other related parameters above which no bioaccumulation is observed.
View Article and Find Full Text PDFImproving regulatory confidence in, and acceptance of, a prediction of toxicity from a quantitative structure-activity relationship (QSAR) requires assessment of its uncertainty and determination of whether the uncertainty is acceptable. Thus, it is crucial to identify potential uncertainties fundamental to QSAR predictions. Based on expert review, sources of uncertainties, variabilities and biases, as well as areas of influence in QSARs for toxicity prediction were established.
View Article and Find Full Text PDFThe Read-Across Assessment Framework (RAAF) was developed by the European Chemicals Agency (ECHA) as an internal tool providing a framework for a consistent, structured and transparent assessment of grouping of chemicals and read-across. Following a RAAF-based evaluation, also developers and users of read-across predictions outside ECHA can judge whether their read-across rationale is sufficiently robust from a regulatory perspective. The aim of this paper is to describe the implementation of RAAF functionalities in the OECD QSAR Toolbox report.
View Article and Find Full Text PDFThis study validates the performance of the TIssue MEtabolism Simulator (TIMES) genotoxicity models with data on pesticide chemicals included in a recently released European Food Safety Authority (EFSA) genotoxicity database. The EFSA database is biased towards negative chemicals. A comparison of substances included in the EFSA database and TIMES genotoxicity databases showed that the majority of the EFSA pesticides is not included in the TIMES genotoxicity databases and, thus, out of the applicability domains of the current TIMES models.
View Article and Find Full Text PDFMitochondrial dysfunction is the result of a number of processes including the uncoupling of oxidative phosphorylation. This study outlines the development of a decision tree-based profiling scheme capable of assigning chemicals to one of six confidence-based categories. The decision tree is based on a set of structural alerts and physicochemical boundaries identified from a detailed study of the literature.
View Article and Find Full Text PDFThe OECD QSAR Toolbox is a computer software designed to make pragmatic qualitative and quantitative structure-activity relationship methods-based predictions of toxicity, including read-across, available to the user in a comprehensible and transparent manner. The Toolbox, provide information on chemicals in structure-searchable, standardized files that are associated with chemical and toxicity data to ensure that proper structural analogs can be identified. This chapter describes the advantages of the Toolbox, the aims, approach, and workflow of it, as well as reviews its history.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
August 2017
A series of case studies designed to further acceptance of read-across predictions, especially for chronic health-related endpoints, have been evaluated with regard to the knowledge and insight they provide. A common aim of these case studies was to examine sources of uncertainty associated with read-across. While uncertainty is related to the quality and quantity of the read across endpoint data, uncertainty also includes a variety of other factors, the foremost of which is uncertainty associated with the justification of similarity and quantity and quality of data for the source chemical(s).
View Article and Find Full Text PDFThe general chemistry principles underlying skin sensitization for Schiff base (SB) electrophiles may be used to develop a quantitative mechanistic model (QMM), based on reactivity supplemented with a hydrophobicity parameter for some but not all structures within the SB reaction domain. For aliphatic Schiff base electrophiles, the log of the no observed effect level (NOEL) values (pNOEL) from the human repeated insult patch test (HRIPT) can be calculated by the reactivity parameter summation of sigma star values (Σσ*) and a hydrophobicity parameter (logP). Specifically, the QMM, pNOEL = 2.
View Article and Find Full Text PDFThis study outlines the use of a recently developed fragment-based thiol reactivity profiler for Michael acceptors to predict toxicity toward Tetrahymena pyriformis and skin sensitization potency as determined in the Local Lymph Node Assay (LLNA). The results showed that the calculated reactivity parameter from the profiler, -log RC(calc), was capable of predicting toxicity for both end points with excellent statistics. However, the study highlighted the importance of a well-defined applicability domain for each end point.
View Article and Find Full Text PDFThis article outlines the work of the Organisation for Economic Co-operation and Development (OECD) that led to being jointly awarded the 2015 Lush Black Box Prize. The award-winning work centred on the development of 'The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins'. This Adverse Outcome Pathway (AOP) has provided the mechanistic basis for the integration of skin sensitisation-related information.
View Article and Find Full Text PDFThe Local Lymph Node Assay (LLNA) is the gold standard regulatory toxicology test for skin sensitisation along with the guinea pig maximisation test (GPMT). Compared with the GPMT, LLNA uses fewer animals, it is quantitative, and it gives a numerical prediction of potency. However several concerns have been raised with this assay, mainly related to false positives and false negatives.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2016
Acute aquatic toxicity is divided into the "physical" mode governed by weak, non-covalent interactions and the "chemical" mode governed by covalent reactions. The potency of chemical interactions is typically expected to be greater than that for physical ones. This enhanced potency is called "excess" toxicity.
View Article and Find Full Text PDFWe investigated the performance of an integrated approach to testing and assessment (IATA), designed to cover different genotoxic mechanisms causing cancer and to replicate measured carcinogenicity data included in a new consolidated database. Genotoxic carcinogenicity was predicted based on positive results from at least two genotoxicity tests: one in vitro and one in vivo (which were associated with mutagenicity categories according to the Globally Harmonized System classification). Substances belonging to double positives mutagenicity categories were assigned to be genotoxic carcinogens.
View Article and Find Full Text PDFThe Adverse Outcome Pathway (AOP) paradigm details the existing knowledge that links the initial interaction between a chemical and a biological system, termed the molecular initiating event (MIE), through a series of intermediate events, to an adverse effect. An important example of a well-defined MIE is the formation of a covalent bond between a biological nucleophile and an electrophilic compound. This particular MIE has been associated with various toxicological end points such as acute aquatic toxicity, skin sensitization, and respiratory sensitization.
View Article and Find Full Text PDFData on toxicity toward Tetrahymena pyriformis is indicator of applicability of a substance in ecologic and pharmaceutical aspects. Quantitative structure-activity relationships (QSARs) between the molecular structure of benzene derivatives and toxicity toward T. pyriformis (expressed as the negative logarithms of the population growth inhibition dose, mmol/L) are established.
View Article and Find Full Text PDFExpanded use of the Threshold of Toxicological Concern (TTC) methodology has brought into discussion the intent of the original questions used in the Cramer scheme or Cramer decision tree. We have analysed, both manually and by Toxtree software, a large dataset of fragrance ingredients and identified several issues with the original Cramer questions. Some relate to definitions and wording of questions; others relate to in silico interpretation of the questions.
View Article and Find Full Text PDFCarcinogenicity is a complex endpoint of high concern yet the rodent bioassay still used is costly to run in terms of time, money and animals. Therefore carcinogenicity has been the subject of many different efforts to both develop short-term tests and non-testing approaches capable of predicting genotoxic carcinogenic potential. In our previous publication (Mekenyan et al.
View Article and Find Full Text PDF