Publications by authors named "Terry Stouch"

We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.

View Article and Find Full Text PDF

This editorial discusses the foundation of aspects of computational chemistry and is a tribute to Peter Goodford, one of those founders, who recently passed away. Several colleagues describe Professor Goodford's work and the person himself.

View Article and Find Full Text PDF

David Weininger's career, accomplishments, genius, and friendship are warmly remembered by several of his colleagues, friends, and admirers.

View Article and Find Full Text PDF

This piece describes the approach by which even a small CADD (Computer-Aided Drug Design) group with limited resources and limited time can achieve substantial success given short budgets and the compressed, urgent environment of a biotech. Some comparisons are made with CADD operations in big pharma.

View Article and Find Full Text PDF

There is a pressing need for new therapeutics to reactivate covalently inactivated acetylcholinesterase (AChE) due to exposure to organophosphorus (OP) compounds. Current reactivation therapeutics (RTs) are not broad-spectrum and suffer from other liabilities, specifically the inability to cross the blood-brain-barrier. Additionally, the chemical diversity of available therapeutics is small, limiting opportunities for structure-activity relationship (SAR) studies to aid in the design of more effective compounds.

View Article and Find Full Text PDF

Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive.

View Article and Find Full Text PDF

The structure of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of ocular hypertension and associated glaucoma, is disclosed. Previously reported LIM kinase inhibitors suffered from poor aqueous stability due to solvolysis of the central urea. Replacement of the urea with a hindered amide resulted in aqueous stable compounds, and addition of solubilizing groups resulted in a set of compounds with good properties for topical dosing in the eye and good efficacy in a mouse model of ocular hypertension.

View Article and Find Full Text PDF

The inactivation of acetylcholinesterase (AChE) by organophosphorus agent (OP) compounds is a serious problem regardless of how the individual was exposed. The reactivation of OP-inactivated AChE is dependent on the OP conjugate, and commonly a specific oxime is better at reactivating a specific OP conjugate than several diverse OP conjugates. The presented research explores the physicochemical properties needed for the reactivation of OP-inactivated AChE.

View Article and Find Full Text PDF

The future of the advancement as well as the reputation of computer-aided drug design will be guided by a more thorough understanding of the domain of applicability of our methods and the errors and confidence intervals of their results. The implications of error in current force fields applied to drug design are given are given as an example. Even as our science advances and our hardware become increasingly more capable, our software will be perhaps the most important aspect in this realization.

View Article and Find Full Text PDF

Molecular interactions and orientations responsible for differences in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer partitioning of three structurally related drug-like molecules (4-ethylphenol, phenethylamine, and tyramine) were investigated. This work is based on previously reported molecular dynamics (MD) simulations that determined their transverse free energy profiles across the bilayer. Previously, the location where the transfer free energy of the three solutes is highest, which defines the barrier domain for permeability, was found to be the bilayer center, while the interfacial region was found to be the preferred binding region.

View Article and Find Full Text PDF

Atomic-level molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers containing small, amphiphilic, drug-like molecules were carried out to examine the influence of polar functionality on membrane partitioning and transport. Three related molecules (tyramine, phenethylamine, and 4-ethylphenol) were chosen to allow a detailed study of the isolated effects of the amine and hydroxyl functionalities on the preferred solute location, free energies of transfer, and the effect of combining both functional groups in a same molecule. Transfer free energy profiles (from water) generated from molecular dynamics (MD) simulations as a function of bilayer depth compared favorably to comparable experimental results.

View Article and Find Full Text PDF

Trytophan Hydroxylase Type I (TPH1), most abundantly expressed in the gastrointestinal tract, initiates the synthesis of serotonin by catalyzing hydroxylation of tryptophan in the presence of biopterin and oxygen. We have previously described three series of novel, periphery-specific TPH1 inhibitors that selectively deplete serotonin in the gastrointestinal tract. We have now determined co-crystal structures of TPH1 with three of these inhibitors at high resolution.

View Article and Find Full Text PDF

A series of deoxycytidine kinase inhibitors was simultaneously optimized for potency and PK properties. A co-crystal structure then allowed merging this series with a high throughput screening hit to afford a highly potent, selective and orally bioavailable inhibitor, compound 10. This compound showed dose dependent inhibition of deoxycytidine kinase in vivo.

View Article and Find Full Text PDF

Computational methods to predict pK(a) values and partition coefficients of drug molecules based on linear free energy relationships (LFERs) rely largely on the principles of independence and additivity of the functional group contributions in each molecule to the overall free energy. Nonadditivities in functional group contributions are often seen when multiple polar functional groups are in close proximity and in cases where conformational flexibility allows widely separated polar functional groups to interact. The degree to which long-range interactions may alter group contributions in more conformationally constrained molecules such as p-(aminoethyl)phenol and structurally similar analogs is more difficult to predict.

View Article and Find Full Text PDF

Tryptophan hydroxylase (TPH) is a key enzyme in the synthesis of serotonin. As a neurotransmitter, serotonin plays important physiological roles both peripherally and centrally. Here we describe the discovery of substituted triazines as a novel class of tryptophan hydroxylase inhibitors.

View Article and Find Full Text PDF

We describe the proceedings and conclusions from the "Workshop on Applications of Protein Models in Biomedical Research" (the Workshop) that was held at the University of California, San Francisco on 11 and 12 July, 2008. At the Workshop, international scientists involved with structure modeling explored (i) how models are currently used in biomedical research, (ii) the requirements and challenges for different applications, and (iii) how the interaction between the computational and experimental research communities could be strengthened to advance the field.

View Article and Find Full Text PDF

The discovery of a novel class of peripheral tryptophan hydroxylase (TPH) inhibitors is described. This class of TPH inhibitors exhibits excellent potency in in vitro biochemical and cell-based assays, and it selectively reduces serotonin levels in the murine intestine after oral administration without affecting levels in the brain. These TPH1 inhibitors may provide novel treatments for gastrointestinal disorders associated with dysregulation of the serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.

View Article and Find Full Text PDF