The application of stabilization technologies to a radiologically contaminated surface has the potential for reducing the spread of contamination and, as a result, decreasing worker exposure to radiation. Three stabilization technologies, calcium chloride (CaCl), flame retardant Phos-Chek MVP-Fx, and SoilO™ were investigated to evaluate their ability to reduce the resuspension and tracking of radiological contamination during response activities such as vehicle and foot traffic. Concrete pavers, asphalt pavers, and sandy soil walking paths were used as test surfaces, along with simulated fallout material (SFM) tagged with radiostrontium (Sr-85) applied as the contaminant.
View Article and Find Full Text PDFAn accidental radiological release or the operation of a radiological dispersal device (RDD) may lead to the contamination of a large area. Such scenarios may lead to health and safety risks associated with the resuspension of contaminated particles due to aeolian (wind-induced) soil erosion and tracking activities. Stabilization technologies limiting resuspension are therefore needed to avoid spreading contamination and to reduce exposures to first responders and decontamination workers.
View Article and Find Full Text PDF