Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines.
View Article and Find Full Text PDFOncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of mutant RMS cells and correlates efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets, and combinations are evaluated in cells and tumor xenografts.
View Article and Find Full Text PDFPurpose: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES.
View Article and Find Full Text PDFDiet, nutritional status, and certain dietary supplements are postulated to influence the development and progression of prostate cancer. Angiogenesis and inflammation are central to tumor growth and progression, but the effect of diet on these processes remains uncertain. We explored changes in 50 plasma cytokines and angiogenic factors (CAF) in 145 men with prostate cancer enrolled in a preoperative, randomized controlled phase II trial with four arms: control (usual diet), low-fat (LF) diet, flaxseed-supplemented (FS) diet, and FS+LS diet.
View Article and Find Full Text PDFIntroduction: The c-Jun coactivator, Jun activation-domain binding protein 1 (Jab1) also known as the fifth component of the COP9 signalosome complex (CSN5), is a novel candidate oncogene whose aberrant expression contributes to the progression of breast carcinoma and other human cancers. The mechanism of Jab1 gene expression and its deregulation in cancer cells remains to be identified. We therefore investigated the transcriptional regulatory mechanisms of Jab1 expression in human breast carcinoma cells.
View Article and Find Full Text PDFc-Jun activation domain-binding protein-1 (Jab1) acts as a modulator of intracellular signaling and affects cellular proliferation and apoptosis, through its existence as a monomer or as the fifth component of the constitutive photomorphogenic-9 signalosome (CSN5). Jab1/CSN5 is involved in transcription factor specificity, deneddylation of NEDD8, and nuclear-to-cytoplasmic shuttling of key molecules. Jab1/CSN5 activities positively and negatively affect a number of pathways, including integrin signaling, cell cycle control, and apoptosis.
View Article and Find Full Text PDF