Publications by authors named "Terry Rantell"

Acrylic bone cement, based on polymethylmethacrylate (PMMA), is a proven polymer having important applications in medicine and dentistry, but this polymer continues to have less than ideal resistance to mechanical fatigue and impact. A variety of materials have been added to bone cement to augment its mechanical strength, but none of these augmentative materials has proven successful. Carbon nanotubes, a new hollow multiwalled tubular material 10-40 nm in diameter, 10-100 microm long, and 50-100 times the strength of steel at 1/6 the weight, have emerged as a viable augmentation candidate because of their large surface area to volume ratio.

View Article and Find Full Text PDF

An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen diffusion through nanometer-scale tubes of the observed microstructure.

View Article and Find Full Text PDF

Chemical vapor deposition (CVD) is the most promising synthesis route for economically producing large quantities of carbon nanotubes. We have developed a low-cost CVD process for the continuous production of aligned multiwall carbon nanotubes (MWNTs). Here we report the effects of reactor temperature, reaction time, and carbon partial pressure on the yield, purity, and size of the MWNTs produced.

View Article and Find Full Text PDF