Publications by authors named "Terry R J Lappin"

Sibling synergy.

Stem Cells Transl Med

January 2015

The sister journals Stem Cells and Stem Cells Translational Medicine have synergistic roles, although there is often considerable overlap in content between them. Whereas Stem Cells is primarily concerned with advancing basic knowledge of mechanism and function, Stem Cells Translational Medicine is geared toward the application of such advances for clinical benefit.

View Article and Find Full Text PDF

The cytogenetically normal subtype of acute myeloid leukemia is associated with an intermediate risk which complicates therapeutic options. Lower overall HOX/TALE expression appears to correlate with more favorable prognosis/better response to treatment in some leukemias and solid cancer. The functional significance of the associated gene expression and response to chemotherapy is not known.

View Article and Find Full Text PDF

To celebrate 30 years of peer-reviewed publication of cutting edge stem cell research in Stem Cells, the first journal devoted to this promising field, we pause to review how far we have come in the three-decade lifetime of the Journal. To do this, we will present our views of the 10 most significant developments that have advanced stem cell biology where it is today. With the increasing rate of new data, it is natural that the bulk of these developments would have occurred in recent years, but we must not think that stem cell biology is a young science.

View Article and Find Full Text PDF

Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation.

View Article and Find Full Text PDF

Methaemoglobinaemia arises from the production of non-functional haemoglobin containing oxidised Fe(3+) which results in reduced oxygen supply to the tissues and manifests as cyanosis in the patient. It can develop by three distinct mechanisms: genetic mutation resulting in the presence of abnormal haemoglobin, a deficiency of methaemoglobin reductase enzyme and toxin-induced oxidation of haemoglobin. The normal haemoglobin fold forms a pocket to bind the haem and stabilise its complex with molecular oxygen, simultaneously preventing spontaneous oxidation of the Fe(2+) ion chelated by the haem pyrroles and the globin histidines.

View Article and Find Full Text PDF

The first congenital defect of hypoxia-sensing homozygosity for VHL 598C>T mutation was recently identified in Chuvash polycythemia. Subsequently, we found this mutation in 11 unrelated individuals of diverse ethnic backgrounds. To address the question of whether the VHL 598C>T substitution occurred in a single founder or resulted from recurrent mutational events in human evolution, we performed haplotype analysis of 8 polymorphic markers covering 340 kb spanning the VHL gene on 101 subjects bearing the VHL 598C>T mutation, including 72 homozygotes (61 Chuvash and 11 non-Chuvash) and 29 heterozygotes (11 Chuvash and 18 non-Chuvash), and 447 healthy unrelated individuals from Chuvash and other ethnic groups.

View Article and Find Full Text PDF

In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase.

View Article and Find Full Text PDF