The ability to accurately quantify the simultaneous effect of multiple genomic loci on multiple traits is now possible due to current and emerging high-throughput genotyping and phenotyping technologies. To date, most efforts to quantify these genotype-to-phenotype relationships have focused on either multi-trait models that test a single marker at a time or multi-locus models that quantify associations with a single trait. Therefore, the purpose of this study was to compare the performance of a multi-trait, multi-locus stepwise (MSTEP) model selection procedure we developed to (a) a commonly used multi-trait single-locus model and (b) a univariate multi-locus model.
View Article and Find Full Text PDFGenotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers. The relatively straightforward, robust, and cost-effective GBS protocol is currently being applied in numerous species by a large number of researchers. Herein we describe a bioinformatics pipeline, TASSEL-GBS, designed for the efficient processing of raw GBS sequence data into SNP genotypes.
View Article and Find Full Text PDFBackground: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world.
Results: The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels.
Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models.
View Article and Find Full Text PDFAssociation analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure.
View Article and Find Full Text PDFRice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http://www.fao.org; USDA 1997, http://www.
View Article and Find Full Text PDFUnlabelled: The goal of this project is to simplify access to genomic diversity and phenotype data, thereby encouraging reuse of this data. The Genomic Diversity and Phenotype Connection (GDPC) accomplishes this by retrieving data from one or more data sources and by allowing researchers to analyze integrated data in a standard format. GDPC is written in JAVA and provides (1) data sources available as web services that transfer XML formatted data via the SOAP protocol; (2) a JAVA API for programmatic access to data sources; and (3) a front-end application that allows users to manage data sources, retrieve data based on filters, sort/group data based on property values and save/open the data as XML files.
View Article and Find Full Text PDF