Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR.
View Article and Find Full Text PDFSulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer(+) cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.
View Article and Find Full Text PDFInvariant natural killer T (iNKT) cells are a small subset of lymphocytes that recognize glycolipid antigens in the context of CD1d and consequently produce large quantities of pro-inflammatory and/or anti-inflammatory cytokines. Several transmembrane glycoproteins have been implicated in the co-stimulation of iNKT cell responses. However, whether glycosylphosphatidylinositol (GPI)-anchored proteins can function in this capacity is not known.
View Article and Find Full Text PDFObjective: The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice.
View Article and Find Full Text PDFAlthough B cells play a pathogenic role in the initiation of type 1 diabetes (T1D) in NOD mice, it is not known whether activated B cells can maintain tolerance and transfer protection from T1D. In this study, we demonstrate that i.v.
View Article and Find Full Text PDFWe previously reported that interleukin (IL)-4 treatment of nonobese diabetic (NOD) mice elevates intrapancreatic CCL4 expression and protects from type 1 diabetes. Here, we show that antibody neutralization of CCL4 abrogates the ability of T-cells from IL-4-treated NOD mice to transfer protection against type 1 diabetes. Intradermal delivery of CCL4 via a plasmid vector stabilized by incorporation of the Epstein-Barr virus EBNA1/oriP episomal maintenance replicon (pHERO8100-CCL4) to NOD mice beginning at later stages of disease progression protects against type 1 diabetes.
View Article and Find Full Text PDFWe recently mapped Idd4 to a 5.2 cM interval on chromosome 11 with two subloci, Idd4.1 and Idd4.
View Article and Find Full Text PDFInvariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection.
View Article and Find Full Text PDFThe mechanism underlying the autoimmune polyglandular syndrome type-1 (APS1) has been attributed to defective T-cell negative selection resulting from reduced expression and presentation of autoantigens in thymic medullary epithelial cells (MECs). It has also been postulated that Aire is involved in development of regulatory T cells, although supporting evidence is lacking. Here we show that expression of Aire in MECs is required for development of iNKT cells, suggesting a role for iNKT cells in APS1.
View Article and Find Full Text PDFA numerical and functional deficiency in invariant NKT (iNKT) cells detectable by 3 wk of age in the thymus and spleen mediates the pathogenesis of type 1 diabetes in NOD mice, but the stage of T cell development at which this deficiency first occurs is unknown. We report in this study that this deficiency develops after the CD4(+)CD8(+) double-positive stage of thymic T cell development and is due to a lineage-specific depletion of CD4(-)CD8(-) double-negative alphabeta T cells and iNKT cells from the thymus between embryonic day 18 and day 1 after birth. Thus, an inheritable defect in a lineage fate decision that elicits a deficiency in fetal thymic iNKT cell development may predispose to susceptibility to type 1 diabetes.
View Article and Find Full Text PDFInvariant CD1d-restricted natural killer T (iNKT) cells function during innate and adaptive immune responses. A functional and numerical deficiency of iNKT cells is well documented in both nonobese diabetic (NOD) mice and humans with autoimmune type 1 diabetes (T1D). Restoring the numerical and/or functional deficiency of iNKT cells in NOD mice by either treatment with alpha-galactosylceramide, transgenic induction of Valpha14-Jalpha18 expression, or transgenic expression of CD1d in NOD islets under the control of the human insulin promoter confers protection from T1D in these mice.
View Article and Find Full Text PDFLittle is known about the pathogenic role of B cell dysfunction in T cell-mediated autoimmune disease. We previously reported that B cell hyper-responsiveness, resistance to apoptosis, and accumulation in islets occur during the onset of insulitis, but not in type 1 diabetes (T1D), in NOD mice. In this study we extended these studies to further determine how islet-infiltrated B cells contribute to this inflammatory insulitis.
View Article and Find Full Text PDFActivation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.
View Article and Find Full Text PDFB-cells proliferate after B-cell receptor (BCR) stimulation and are deleted by activation-induced cell death (AICD) during negative selection. We report that B-cells from type 1 diabetes-susceptible NOD and type 1 diabetes-resistant but insulitis-prone congenic NOD.B6Idd4B and NOR mice, relative to B-cells from nonautoimmune disease-prone C57BL/6 and BALB/c mice, display a hyperproliferative response to BCR stimulation and lower activation threshold in the absence or presence of interleukin 4 (IL-4).
View Article and Find Full Text PDFIn nonobese diabetic (NOD) mice, a deficiency in the number and function of invariant natural killer T-cells (iNKT cells) contributes to the onset of type 1 diabetes. The activation of CD1d-restricted iNKT cells by alpha-galactosylceramide (alpha-GalCer) corrects these deficiencies and protects against spontaneous and recurrent type 1 diabetes. Although interleukin (IL)-4 and IL-10 have been implicated in alpha-GalCer-induced protection from type 1 diabetes, a precise role for these cytokines in iNKT cell regulation of susceptibility to type 1 diabetes has not been identified.
View Article and Find Full Text PDFIGF-I regulates islet beta-cell growth, survival, and metabolism and protects against type 1 diabetes (T1D). However, the therapeutic efficacy of free IGF-I may be limited by its biological half-life in vivo. We investigated whether prolongation of its half-life as an IGF-I/IGF binding protein (IGFBP)-3 complex affords increased protection against T1D and whether this occurs by influencing T cell function and/or islet beta-cell growth and survival.
View Article and Find Full Text PDFDeficiencies in NKT cell number and function mediate the development of Type 1 diabetes (TID). NKT cell activation with the CD1d ligand alpha-galactosylceramide (alpha-GalCer) corrects these deficiencies and prevents the onset and recurrence of T1D in NOD mice. To investigate how alpha-GalCer accomplishes this, we conducted three sets of studies.
View Article and Find Full Text PDFTumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is expressed in different tissues and cells, including pancreas and lymphocytes, and can induce apoptosis in various tumor cells but not in most normal cells. The specific roles of TRAIL in health and disease remain unclear. Here we show by cDNA array analyses that TRAIL gene expression is upregulated in pancreatic islets during the development of autoimmune type 1 diabetes in nonobese diabetic (NOD) mice and in Min6 islet beta-cells activated by TNF-alpha + interferon-gamma.
View Article and Find Full Text PDFActivation-induced cell death (AICD) is a mechanism of homeostasis that limits the clonal expansion of autoreactive T cells and regulates central and peripheral tolerance. In nonobese diabetic (NOD) mice, defects in central and peripheral tolerance are associated with a proliferative hyporesponsiveness of thymocytes and peripheral T cells elicited upon TCR activation. We investigated whether these defects in tolerance induction and hyporesponsiveness of NOD T cells manifest in an altered susceptibility to TCR-induced AICD.
View Article and Find Full Text PDFInvariant CD1D-restricted natural killer T (iNKT) cells function during innate and adaptive immunity and regulate numerous immune responses, such as autoimmune disease, tumour surveillance, infectious disease and abortions. However, the molecular basis of their functions and the nature of disease-associated defects of iNKT cells are unclear and have been the subject of recent controversy. Here, we review recent findings that underscore the potential importance of interactions between iNKT cells and dendritic cells (DCs) that indicate that iNKT cells regulate DC activity to shape both pro-inflammatory and tolerogenic immune responses.
View Article and Find Full Text PDFNatural killer T (NKT) cells express phenotypic characteristics shared by conventional natural killer cells and T cells, and reside in several primary and secondary lymphoid as well as nonlymphoid organs. Although these cells possess important effector functions in immunity against cancer and microbial pathogens, their immunoregulatory function has received much recent attention. There is convincing evidence to suggest a regulatory role for these cells in the control of susceptibility to autoimmune disease.
View Article and Find Full Text PDFAutoimmune diseases, especially type 1 diabetes (T1D), may be caused by dysregulation of the immune system, which leads to hyporesponsiveness of regulatory T helper 2 (Th2) cells and promotion of autoimmune Th1 cells. Natural killer T (NKT) cells, which comprise a minor subpopulation of T cells, play a critical role in immunoregulation as a result of a rapid burst of IL-4 and IFN-gamma secretion. These cells are functionally and numerically deficient in individuals at risk of T1D, as well as in nonobese diabetic (NOD) mice.
View Article and Find Full Text PDF