Publications by authors named "Terry Deshler"

Profiles of stratospheric aerosol size distributions have been measured using balloon-borne optical particle counters, from Laramie, Wyoming (41°N) since 1971. In 2019, this measurement record transitioned to the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado (40°N). The new LASP Optical Particle Counter (LOPC), the fourth generation of instruments used for this record, is smaller and lighter (2 kg) than prior instruments, measures aerosols with diameters ≥0.

View Article and Find Full Text PDF

The method to derive aerosol size distributions from in situ stratospheric measurements from the University of Wyoming is modified to include an explicit counting efficiency function (CEF) to describe the channel-dependent instrument counting efficiency. This is motivated by Kovilakam and Deshler's (2015, https://doi.org/10.

View Article and Find Full Text PDF

Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere.

View Article and Find Full Text PDF

Fromm et al. and Vernier et al. suggest that their analyses of satellite measurements indicate that the main part of the Nabro volcanic plume from the eruption on 13 June 2011 was directly injected into the stratosphere.

View Article and Find Full Text PDF
Article Synopsis
  • The Nabro volcano in Eritrea erupted on June 13, 2011, releasing about 1.3 teragrams of sulfur dioxide (SO(2)) into the atmosphere.
  • The eruption propelled SO(2) to altitudes between 9 to 14 kilometers, leading to significant aerosol presence in the stratosphere.
  • This event highlights that volcanic eruptions don’t need to be extremely powerful to influence climate; even those that primarily inject sulfur into the lower stratosphere can have an impact.
View Article and Find Full Text PDF

A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements.

View Article and Find Full Text PDF

The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km.

View Article and Find Full Text PDF