Context: Maternally inherited STX16 deletions that cause loss of methylation at GNAS exon A/B and thereby reduce Gsα expression are the most frequent cause of autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP1B). Early identification of these disease-causing variants in the children of affected and unaffected female carriers would prompt treatment with calcium and calcitriol once parathyroid hormone (PTH) levels increase, thereby preventing hypocalcemia and associated complications.
Objective: This study aimed to determine when PTH and calcium abnormalities develop after birth if a STX16 deletion is inherited maternally.
Context: Early-onset obesity, characteristic for disorders affecting the leptin-melanocortin pathway, is also observed in pseudohypoparathyroidism type 1A (PHP1A), a disorder caused by maternal GNAS mutations that disrupt expression or function of the stimulatory G protein α-subunit (Gsα). Mutations and/or epigenetic abnormalities at the same genetic locus are also the cause of pseudohypoparathyroidism type 1B (PHP1B). However, although equivalent biochemical and radiographic findings can be encountered in these related disorders caused by GNAS abnormalities, they are considered distinct clinical entities.
View Article and Find Full Text PDFBackground: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest.
Methods: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings.