By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region.
View Article and Find Full Text PDFHere, we report the design and successful implementation of an ultra-low oxygen sample cell for use on the SAXS-WAXS (small-wide angle x-ray scattering) beamline I22 at DIAMOND. The rigorous exclusion of oxygen is found to require double jacketing with purge gas throughout the entire system, pipework, pumps, and the sample cell itself. This particularly includes a "double-window" arrangement at the sample location to accommodate the very tight geometrical restrictions of the sample position.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1021/acs.macromol.
View Article and Find Full Text PDFIn situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive.
View Article and Find Full Text PDFRecent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation.
View Article and Find Full Text PDFBone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture.
View Article and Find Full Text PDFThe composition of atmospheric aerosols varies with time, season, location, and environment. This affects key aerosol properties such as hygroscopicity and reactivity, influencing the aerosol's impact on the climate and air quality. The organic fraction of atmospheric aerosol emissions often contains surfactant material, such as fatty acids.
View Article and Find Full Text PDFThe bone-cartilage unit (BCU) is a universal feature in diarthrodial joints, which is mechanically-graded and subjected to shear and compressive strains. Changes in the BCU have been linked to osteoarthritis (OA) progression. Here we report existence of a physiological internal strain gradient (pre-strain) across the BCU at the ultrastructural scale of the extracellular matrix (ECM) constituents, specifically the collagen fibril.
View Article and Find Full Text PDFThe mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude.
View Article and Find Full Text PDFBiomechanical changes to the collagen fibrillar architecture in articular cartilage are believed to play a crucial role in enabling normal joint function. However, experimentally there is little quantitative knowledge about the structural response of the Type II collagen fibrils in cartilage to cyclic loading in situ, and the mechanisms that drive the ability of cartilage to withstand long-term repetitive loading. Here we utilize synchrotron small-angle X-ray scattering (SAXS) combined with in-situ cyclic loading of bovine articular cartilage explants to measure the fibrillar response in deep zone articular cartilage, in terms of orientation, fibrillar strain and inter-fibrillar variability in healthy cartilage and cartilage degraded by exposure to the pro-inflammatory cytokine IL-1β.
View Article and Find Full Text PDFThermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene--phthalate)--poly(ε-decalactone)--poly(cyclohexene--phthalate) {PE-PDL-PE}.
View Article and Find Full Text PDFSmall-angle X-ray scattering (SAXS) is an effective characterization technique for multi-phase nanocomposites. The structural complexity and heterogeneity of biological materials require the development of new techniques for the 3D characterization of their hierarchical structures. Emerging SAXS tomographic methods allow reconstruction of the 3D scattering pattern in each voxel but are costly in terms of synchrotron measurement time and computer time.
View Article and Find Full Text PDFBeamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform.
View Article and Find Full Text PDFUltra-SAXS can enhance the capabilities of existing synchrotron SAXS/WAXS beamlines. A compact ultra-SAXS module has been developed, which extends the measurable q-range with 0.0015 ≤ q (nm) ≤ 0.
View Article and Find Full Text PDFCooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system.
View Article and Find Full Text PDFThe addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current-voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored.
View Article and Find Full Text PDFDetermining multiscale, concurrent strain, and deformation mechanisms in hierarchical biological materials is a crucial engineering goal, to understand structural optimization strategies in Nature. However, experimentally characterizing complex strain and displacement fields within a 3D hierarchical composite, in a multiscale full-field manner, is challenging. Here, we determined the in situ strains at the macro-, meso-, and molecular-levels in stomatopod cuticle simultaneously, by exploiting the anisotropy of the 3D fiber diffraction coupled with sample rotation.
View Article and Find Full Text PDFGlucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited.
View Article and Find Full Text PDFNanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load.
View Article and Find Full Text PDFCarbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness.
View Article and Find Full Text PDFAs bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour - and the alterations in metabolic bone disease - is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing's syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10 to 10 s.
View Article and Find Full Text PDFThe cuticle of stomatopod is an example of a natural mineralized biomaterial, consisting of chitin, amorphous calcium carbonate and protein components with a multiscale hierarchical structure, and forms a protective shell with high impact resistance. At the ultrastructural level, cuticle mechanical functionality is enabled by the nanoscale architecture, wherein chitin fibrils are in intimate association with enveloping mineral and proteins. However, the interactions between these ultrastructural building blocks, and their coupled response to applied load, remain unclear.
View Article and Find Full Text PDF