Publications by authors named "Terri Rothermel"

The V protein of parainfluenza virus 5 (PIV5) plays an important role in the evasion of host immune responses. The V protein blocks interferon (IFN) signaling in human cells by causing degradation of the STAT1 protein, a key component of IFN signaling, and blocks IFN-beta production by preventing nuclear translocation of IRF3, a key transcription factor for activating IFN-beta promoter. Interleukin-6 (IL-6), along with tumor necrosis factor (TNF)-alpha and IL-1beta, is a major proinflammatory cytokine that plays important roles in clearing virus infection through inflammatory responses.

View Article and Find Full Text PDF

Wild-type mouse brain endothelial (bEND) cells transformed with the polyoma virus middle-T proliferate rapidly in culture and form hemangiomas in mice. These cells express high levels of platelet/endothelial cell adhesion molecule-1 (PECAM-1), a molecule shown to be important during hemangioma formation. In this study, we have examined the ability of polyoma virus middle-T-transformed mouse bEND cells prepared from PECAM-1-/- mice to proliferate in culture and form hemangiomas in mice.

View Article and Find Full Text PDF

The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import.

View Article and Find Full Text PDF

Simian virus 5 (SV5) is a member of the paramyxovirus family, which includes emerging viruses such as Hendra virus and Nipah virus as well as many important human and animal pathogens that have been known for years. SV5 encodes eight known viral proteins, including a small hydrophobic integral membrane protein (SH) of 44 amino acids. SV5 without the SH gene (rSV5deltaSH) is viable, and growth of rSV5deltaSH in tissue culture cells and viral protein and mRNA production in rSV5deltaSH-infected cells are indistinguishable from those of the wild-type SV5 virus.

View Article and Find Full Text PDF