Using a canine critical-size segmental defect model, a two-phased study was undertaken to evaluate the healing efficacy of demineralized bone and cancellous chips (DBM-CC) enriched with osteoprogenitor cells using a Selective Cell Retention (SCR) technology. The goals of this study were: 1) to determine the bone-healing efficacy of SCR-enriched grafts versus autograft, and 2) to assess the value of clotting SCR-enriched grafts with platelet-rich plasma (PRP). Thirty dogs were included in Phase I: 18 dogs were treated with an SCR-enriched DBM-CC graft clotted with autologous bone marrow, and were compared to 12 autograft controls.
View Article and Find Full Text PDFJ Biomed Mater Res A
February 2004
Axons are guided to their targets by a combination of haptotactic and chemotactic cues. We previously demonstrated that soluble neurotrophic factor concentration gradients guide axons in a model system. In an attempt to translate this model system to a device for implantation, our goal was to immobilize a stable neurotrophic concentration gradient for axonal (or neurite) guidance.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2004
In order to promote regeneration after spinal cord injury, growth factors have been applied in vivo to rescue ailing neurons and provide a path finding signal for regenerating neurites. We previously demonstrated that soluble growth factor concentration gradients can guide axons over long distances, but this model is inherently limited to in vitro applications. To translate the use of growth factor gradients to an implantible device for in vivo studies, we developed a photochemical method to bind nerve growth factor (NGF) to microporous poly(2-hydroxyethylmethacrylate) (PHEMA) gels and tested bioactivity in vitro.
View Article and Find Full Text PDF