Publications by authors named "Terrence R Stanford"

The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only.

View Article and Find Full Text PDF

Cognitive abilities of primates, including humans, continue to improve through adolescence . While a range of changes in brain structure and connectivity have been documented , how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development.

View Article and Find Full Text PDF

The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood.

View Article and Find Full Text PDF

Attention mechanisms that guide visuomotor behaviors are classified into three broad types according to their reliance on stimulus salience, current goals, and selection histories (i.e., recent experience with events of many sorts).

View Article and Find Full Text PDF

Intuitively, combining multiple sources of evidence should lead to more accurate decisions than considering single sources of evidence individually. In practice, however, the proper computation may be difficult, or may require additional data that are inaccessible. Here, based on the concept of conditional independence, we consider expressions that can serve either as recipes for integrating evidence based on limited data, or as statistical benchmarks for characterizing evidence integration processes.

View Article and Find Full Text PDF

The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only.

View Article and Find Full Text PDF

Intuitively, combining multiple sources of evidence should lead to more accurate decisions than considering single sources of evidence individually. In practice, however, the proper computation may be difficult, or may require additional data that are inaccessible. Here, based on the concept of conditional independence, we consider expressions that can serve either as recipes for integrating evidence based on limited data, or as statistical benchmarks for characterizing evidence integration processes.

View Article and Find Full Text PDF

Selecting where to look next depends on both the salience of objects and current goals (what we are looking for), but discerning their relative contributions over the time frame of typical visuomotor decisions (200-250 ms) has been difficult. Here we investigate this problem using an urgent choice task with which the two contributions can be dissociated and tracked moment by moment. Behavioral data from three monkeys corresponded with model-based predictions: when salience favored the target, perceptual performance evolved rapidly and steadily toward an asymptotic level; when salience favored the distracter, many rapid errors were produced and the rise in performance took more time-effects analogous to oculomotor and attentional capture.

View Article and Find Full Text PDF

The lateral intraparietal area (LIP) contains spatially selective neurons that help guide eye movements and, according to numerous studies, do so by accumulating sensory evidence in favor of one choice (e.g., look left) or another (look right).

View Article and Find Full Text PDF

To generate the next eye movement, oculomotor circuits take into consideration the physical salience of objects in view and current behavioral goals, exogenous and endogenous influences, respectively. However, the interactions between exogenous and endogenous mechanisms and their dynamic contributions to target selection have been difficult to resolve because they evolve extremely rapidly. In a recent study (Salinas et al.

View Article and Find Full Text PDF

The choice of where to look next is determined by both exogenous (bottom-up) and endogenous (top-down) factors, but details of their interaction and distinct contributions to target selection have remained elusive. Recent experiments with urgent choice tasks, in which stimuli are evaluated while motor plans are already advancing, have greatly clarified these contributions. Specifically, exogenous modulations associated with stimulus detection act rapidly and briefly (∼25 ms) to automatically halt and/or boost ongoing motor plans as per spatial congruence rules.

View Article and Find Full Text PDF

Measuring when exactly perceptual decisions are made is crucial for defining how the activation of specific neurons contributes to behavior. However, in traditional, nonurgent visuomotor tasks, the uncertainty of this temporal measurement is very large. This is a problem not only for delimiting the capacity of perception, but also for correctly interpreting the functional roles ascribed to choice-related neuronal responses.

View Article and Find Full Text PDF

Hemianopia induced by unilateral visual cortex lesions can be resolved by repeatedly exposing the blinded hemifield to auditory-visual stimuli. This rehabilitative "training" paradigm depends on mechanisms of multisensory plasticity that restore the lost visual responsiveness of multisensory neurons in the ipsilesional superior colliculus (SC) so that they can once again support vision in the blinded hemifield. These changes are thought to operate via the convergent visual and auditory signals relayed to the SC from association cortex (the anterior ectosylvian sulcus [AES], in cat).

View Article and Find Full Text PDF

The operation of our multiple and distinct sensory systems has long captured the interest of researchers from multiple disciplines. When the Society was founded 50 years ago to bring neuroscience research under a common banner, sensory research was largely divided along modality-specific lines. At the time, there were only a few physiological and anatomical observations of the multisensory interactions that powerfully influence our everyday perception.

View Article and Find Full Text PDF

In the antisaccade task, which is considered a sensitive assay of cognitive function, a salient visual cue appears and the participant must look away from it. This requires sensory, motor-planning, and cognitive neural mechanisms, but what are their unique contributions to performance, and when exactly are they engaged? Here, by manipulating task urgency, we generate a psychophysical curve that tracks the evolution of the saccadic choice process with millisecond precision, and resolve the distinct contributions of reflexive (exogenous) and voluntary (endogenous) perceptual mechanisms to antisaccade performance over time. Both progress extremely rapidly, the former driving the eyes toward the cue early on (∼100 ms after cue onset) and the latter directing them away from the cue ∼40 ms later.

View Article and Find Full Text PDF

Rahnev & Denison (R&D) catalog numerous experiments in which performance deviates, often in subtle ways, from the theoretical ideal. We discuss an extreme case, an elementary behavior (reactive saccades to single targets) for which a simple contextual manipulation results in responses that are dramatically different from those expected based on reward maximization - and yet are highly informative and amenable to mechanistic examination.

View Article and Find Full Text PDF

Choices of where to look are informed by perceptual judgments, which locate objects of current value or interest within the visual scene. This perceptual-motor transform is partly implemented in the frontal eye field (FEF), where visually responsive neurons appear to select behaviorally relevant visual targets and, subsequently, saccade-related neurons select the movements required to look at them. Here, we use urgent decision-making tasks to show (1) that FEF motor activity can direct accurate, visually informed choices in the complete absence of prior target-distracter discrimination by FEF visual responses and (2) that such discrimination by FEF visual cells shows an all-or-none reliance on the presence of stimulus attributes strongly associated with saliency-driven attentional allocation.

View Article and Find Full Text PDF

Diverse psychophysical and neurophysiological results show that oculomotor networks are continuously active, such that plans for making the next eye movement are always ongoing. So, when new visual information arrives unexpectedly, how are those plans affected? At what point can the new information start guiding an eye movement, and how? Here, based on modeling and simulation results, we make two observations that are relevant to these questions. First, we note that many experiments, including those investigating the phenomenon known as "saccadic inhibition", are consistent with the idea that sudden-onset stimuli briefly interrupt the gradual rise in neural activity associated with the preparation of an impending saccade.

View Article and Find Full Text PDF

A perceptual judgment is typically characterized by constructing psychometric and chronometric functions, i.e., by mapping the accuracies and reaction times of motor choices as functions of a sensory stimulus feature dimension.

View Article and Find Full Text PDF

In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered.

View Article and Find Full Text PDF

Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood.

View Article and Find Full Text PDF

Executive functions including behavioral response inhibition mature after puberty, in tandem with structural changes in the prefrontal cortex. Little is known about how activity of prefrontal neurons relates to this profound cognitive development. To examine this, we tracked neuronal responses of the prefrontal cortex in monkeys as they transitioned from puberty into adulthood and compared activity at different developmental stages.

View Article and Find Full Text PDF

Oculomotor signals circulate within putative recurrent feedback loops that include the frontal eye field (FEF) and the oculomotor thalamus (OcTh). To examine how OcTh contributes to visuomotor control, and perceptually informed saccadic choices in particular, neural correlates of perceptual judgment and motor selection in OcTh were evaluated and compared with those previously reported for FEF in the same subjects. Monkeys performed three tasks: a choice task in which perceptual decisions are urgent, a choice task in which identical decisions are made without time pressure, and a single-target, delayed saccade task.

View Article and Find Full Text PDF

A recent study reveals a dynamic neural map that provides a continuous representation of remembered visual stimulus locations with respect to constantly changing gaze. This finding suggests a new mechanistic framework for understanding the spatiotemporal dynamics of goal-directed action.

View Article and Find Full Text PDF

The brain's ability to integrate information from different senses is acquired only after extensive sensory experience. However, whether early life experience instantiates a general integrative capacity in multisensory neurons or one limited to the particular cross-modal stimulus combinations to which one has been exposed is not known. By selectively restricting either visual-nonvisual or auditory-nonauditory experience during the first few months of life, the present study found that trisensory neurons in cat superior colliculus (as well as their bisensory counterparts) became adapted to the cross-modal stimulus combinations specific to each rearing environment.

View Article and Find Full Text PDF