Helix-coil models are routinely used to interpret circular dichroism data of helical peptides or predict the helicity of naturally-occurring and designed polypeptides. However, a helix-coil model contains significantly more information than mean helicity alone, as it defines the entire ensemble-the equilibrium population of every possible helix-coil configuration-for a given sequence. Many desirable quantities of this ensemble are either not obtained as ensemble averages or are not available using standard helicity-averaging calculations.
View Article and Find Full Text PDFHelix-coil models are routinely used to interpret CD data of helical peptides or predict the helicity of naturally-occurring and designed polypeptides. However, a helix-coil model contains significantly more information than mean helicity alone, as it defines the entire ensemble - the equilibrium population of every possible helix-coil configuration - for a given sequence. Many desirable quantities of this ensemble are either not obtained as ensemble averages, or are not available using standard helicity-averaging calculations.
View Article and Find Full Text PDFHistatin 5 (Hist5) is an antimicrobial peptide found in human saliva as part of the innate immune system. Hist5 can bind several metal ions in vitro, and Zn has been shown to function as an inhibitory switch to regulate the peptide's biological activity against the opportunistic fungal pathogen in cell culture. Here, we studied Zn binding to Hist5 at four temperatures from 15 to 37 °C using isothermal titration calorimetry to obtain thermodynamic parameters that were corrected for competing buffer effects.
View Article and Find Full Text PDFRNA recognition frequently results in conformational changes that optimize intermolecular binding. As a consequence, the overall binding affinity of RNA to its binding partners depends not only on the intermolecular interactions formed in the bound state but also on the energy cost associated with changing the RNA conformational distribution. Measuring these "conformational penalties" is, however, challenging because bound RNA conformations tend to have equilibrium populations in the absence of the binding partner that fall outside detection by conventional biophysical methods.
View Article and Find Full Text PDFIn the version of this Article originally published, one of the authors' names was incorrectly given as Jeffery Schaal; it should have been Jeffrey L. Schaal. This has been corrected in all versions of the Article.
View Article and Find Full Text PDFEmergent properties of natural biomaterials result from the collective effects of nanoscale interactions among ordered and disordered domains. Here, using recombinant sequence design, we have created a set of partially ordered polypeptides to study emergent hierarchical structures by precisely encoding nanoscale order-disorder interactions. These materials, which combine the stimuli-responsiveness of disordered elastin-like polypeptides and the structural stability of polyalanine helices, are thermally responsive with tunable thermal hysteresis and the ability to reversibly form porous, viscoelastic networks above threshold temperatures.
View Article and Find Full Text PDFThe flexibility of biological macromolecules is an important structural determinant of function. Unfortunately, the correlations between different motional modes are poorly captured by discrete ensemble representations. Here, we present new ways to both represent and visualize correlated interdomain motions.
View Article and Find Full Text PDFGlobular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains.
View Article and Find Full Text PDFThe pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2015
Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2015
Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2.
View Article and Find Full Text PDFThe Staphylococcus aureus virulence factor staphylococcal protein A (SpA) is a major contributor to bacterial evasion of the host immune system, through high-affinity binding to host proteins such as antibodies. SpA includes five small three-helix-bundle domains (E-D-A-B-C) separated by conserved flexible linkers. Prior attempts to crystallize individual domains in the absence of a binding partner have apparently been unsuccessful.
View Article and Find Full Text PDFStaphylococcal protein A (SpA) is a multidomain protein consisting of five globular IgG binding domains separated by a conserved six- to nine-residue flexible linker. We collected SAXS data on the N-terminal protein-binding half of SpA (SpA-N) and constructs consisting of one to five domain modules in order to determine statistical conformation of this important S. aureus virulence factor.
View Article and Find Full Text PDFCoupled ligand binding and conformational change plays a central role in biological regulation. Ligands often regulate protein function by modulating conformational dynamics, yet the order in which binding and conformational change occurs are often hotly debated. Here we show that the "conformational selection versus induced fit" distinction on which this debate is based is a false dichotomy because the mechanism depends on ligand concentration.
View Article and Find Full Text PDFThe mechanical properties of organic and biomolecular thin films on surfaces play an important role in a broad range of applications. Although force-modulation microscopy (FMM) is used to map the apparent elastic properties of such films with high lateral resolution in air, it has rarely been applied in aqueous media. In this letter we describe the use of FMM to map the apparent elastic properties of self-assembled monolayers and end-tethered protein thin films in aqueous media.
View Article and Find Full Text PDFSeven-transmembrane receptors (7TMRs), also called G protein-coupled receptors (GPCRs), represent the largest class of drug targets, and they can signal through several distinct mechanisms including those mediated by G proteins and the multifunctional adaptor proteins β-arrestins. Moreover, several receptor ligands with differential efficacies toward these distinct signaling pathways have been identified. However, the structural basis and mechanism underlying this 'biased agonism' remains largely unknown.
View Article and Find Full Text PDFProtein thermodynamic stability is a fundamental physical characteristic that determines biological function. Furthermore, alteration of thermodynamic stability by macromolecular interactions or biochemical modifications is a powerful tool for assessing the relationship between protein structure, stability, and biological function. High-throughput approaches for quantifying protein stability are beginning to emerge that enable thermodynamic measurements on small amounts of material, in short periods of time, and using readily accessible instrumentation.
View Article and Find Full Text PDFProtein folding intermediates are often imperative for overall folding processes and consequent biological functions. However, the low population and transient nature of the intermediate states often hinder their biochemical and biophysical characterization. Previous studies have demonstrated that Bacillus subtilis ribonuclease P protein (P protein) is conformationally heterogeneous and folds with multiphasic kinetics, indicating the presence of an equilibrium and kinetic intermediate in its folding mechanism.
View Article and Find Full Text PDFUnderstanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2010
The Gibbs free energy difference between native and unfolded states ("stability") is one of the fundamental characteristics of a protein. By exploiting the thermodynamic linkage between ligand binding and stability, interactions of a protein with small molecules, nucleic acids, or other proteins can be detected and quantified. Determination of protein stability can therefore provide a universal monitor of biochemical function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
The mechanism of ligand binding coupled to conformational changes in macromolecules has recently attracted considerable interest. The 2 limiting cases are the "induced fit" mechanism (binding first) or "conformational selection" (conformational change first). Described here are the criteria by which the sequence of events can be determined quantitatively.
View Article and Find Full Text PDFInterconversion of protein conformations is imperative to function, as evidenced by conformational changes associated with enzyme catalytic cycles, ligand binding and post-translational modifications. In this study, we used 15N NMR relaxation experiments to probe the fast (i.e.
View Article and Find Full Text PDFAnalysis of biopolymer sequences and structures generally adopts one of two approaches: use of detailed biophysical theoretical models of the system with experimentally-determined parameters, or largely empirical statistical models obtained by extracting parameters from large datasets. In this work, we demonstrate a merger of these two approaches using Bayesian statistics. We adopt a common biophysical model for local protein folding and peptide configuration, the helix-coil model.
View Article and Find Full Text PDFbeta-Arrestins are multifunctional adaptor proteins that regulate seven transmembrane-spanning receptor (7TMR) desensitization and internalization and also initiate alternative signaling pathways. Studies have shown that beta-arrestins undergo a conformational change upon interaction with agonist-occupied, phosphorylated 7TMRs. Although conformational changes have been reported for visual arrestin and beta-arrestin2, these studies are not representative of conformational changes in beta-arrestin1.
View Article and Find Full Text PDFElastin-like polypeptides (ELPs) are stimulus-responsive polymers that contain repeats of five amino acids, Val-Pro-Gly-Xaa-Gly (VPGXG), where Xaa is a guest residue that can be any amino acid with the exception of proline. While studying the conformational mechanics of ELPs over a range of solvent conditions by single-molecule force spectroscopy, we noticed that some force-extension curves showed temperature-independent, extensional transitions that could not be fitted with a freely jointed chain or worm-like chain model. Here we show that the observed molecular elongation results from the force-induced peptidyl-prolyl cis-trans isomerization in prolines, which are repeated every fifth residue in the main chain of ELPs.
View Article and Find Full Text PDF