In the United States, Black men who have sex with men (MSM) are disproportionately affected by HIV/AIDS. Thus, there is a need to understand the challenges facing health departments and community-based organizations responding to the HIV epidemic among this population. We interviewed 71 AIDS program directors, health department staff, and leaders of community-based organizations in 9 states and the District of Columbia.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2006
The in vitro activity of retapamulin was determined and compared to that of topical and community antibiotics. The MIC(90)s of retapamulin against Staphylococcus aureus and Streptococcus pyogenes were 0.12 microg/ml and 0.
View Article and Find Full Text PDFBacterial enoyl-ACP reductase (FabI) is responsible for catalyzing the final step of bacterial fatty acid biosynthesis and is an attractive target for the development of novel antibacterial agents. Previously we reported the development of FabI inhibitor 4 with narrow spectrum antimicrobial activity and in vivo efficacy against Staphylococcus aureus via intraperitoneal (ip) administration. Through iterative medicinal chemistry aided by X-ray crystal structure analysis, a new series of inhibitors has been developed with greatly increased potency against FabI-containing organisms.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2002
The MICs of triclosan for 31 clinical isolates of Staphylococcus aureus were 0.016 micro g/ml (24 strains), 1 to 2 micro g/ml (6 strains), and 0.25 micro g/ml (1 strain).
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2002
Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus.
View Article and Find Full Text PDFBacterial enoyl-ACP reductase (FabI) catalyzes the final step in each cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. Our efforts to identify potent, selective FabI inhibitors began with screening of the GlaxoSmithKline proprietary compound collection, which identified several small-molecule inhibitors of Staphylococcus aureus FabI. Through a combination of iterative medicinal chemistry and X-ray crystal structure based design, one of these leads was developed into the novel aminopyridine derivative 9, a low micromolar inhibitor of FabI from S.
View Article and Find Full Text PDF