Publications by authors named "Terrance J Haanen"

Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis.

View Article and Find Full Text PDF

Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency.

View Article and Find Full Text PDF

Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis.

View Article and Find Full Text PDF

Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of . The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in that enables selection of large-scale contractions of (CCTG) within the intron of a reporter gene and subsequent genetic analysis.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels.

View Article and Find Full Text PDF

Unlabelled: Uterine serous carcinoma (USC) is a highly aggressive endometrial cancer subtype with limited therapeutic options and a lack of targeted therapies. While mutations to PPP2R1A, which encodes the predominant protein phosphatase 2A (PP2A) scaffolding protein Aα, occur in 30% to 40% of USC cases, the clinical actionability of these mutations has not been studied. Using a high-throughput screening approach, we showed that mutations in Aα results in synthetic lethality following treatment with inhibitors of ribonucleotide reductase (RNR).

View Article and Find Full Text PDF